igraph Reference Manual

Gabor Csardi, Department of Statistics, Harvard University
Tamas Nepusz, Department of Biological Physics, E6tvds Lorand University
Vincent Traag, Centre for Science and Technology Studies, Leiden University
Szabolcs Horvét, Center for Systems Biology Dres-
den, Max Planck Institute for Cell Biology and Genetics
Fabio Zanini, Lowy Cancer Research Centre, University of New South Wales

igraph Reference Manual
by Gabor Csardi, Tamas Nepusz, Vincent Traag, Szabolcs Horvét, and Fabio Zanini

094

This manual isfor igraph, version 0.9.4.

Copyright (C) 2005-2019 Gabor Csardi and Tamés Nepusz. Copyright (C) 2020-2021 igraph development team. Permission is granted to copy,
distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by
the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the licenseisincluded

in the section entitled “GNU Free Documentation License”.

Table of Contents

[gL oo (0 1o o RO TS PP UOPPPTPUTPPPIN 1
IGraph IS fre@ SOFtWAIE et e 1
L6011 0o o g="o] o TP TP TPPPPTPPPIN 2

2. INSEBITALION ..ottt e e e e e 3
PrEIEOUISITES ...ttt ettt ettt et et e een e eaaas 3
F0ES = = 1 o] o PSP PP P PRSPPI 3

General BUild INSIFUCKIONScoveeiiiii e 3
Specific instructions for WIiNAOWSiviiiiiiiiiiieeee e 4
Notable configuration OPLIONSccveeuiiiiiii e 5
Building the doCUMENEELIONouuuiiiiii e e e e 6
Notes for package MaINTAINETS i e e e e e e e 6
Auto-detection Of dependENCIESvviiiii e 6
Shared and Static DUITASc.uuiiiiiiii e 7
CrOSS-COMPITIING .. eeeet ettt ettt eena s 7
AdItioNal NOLES ... e 7

I N 1o - PSP PP PPPPTN 8

Compiling programs USING IGIaPNuuueieiiie e 8
Compiling With CIMEKEcoouiiiiiiii e 8
Compiling WIithOUt CIM@KEccuuuiiiiiiie e 9
RUNNING the PIrOGIraM ... it e et e e e eees 9

Creating YOUr firSt GrapiSccuuuiiiiiie et e 9

Calculating various properties of graphsvveiiiiiieii e 11

4. About igraph graphs, the basic INterfaceo 13
The igraph data MOGEliiiii e e 13
The DaSIC INTEITACEeeve et 14

Graph constructors and deStIUCTONScceuuuieieii et 14
BasiC QUENY OPEIELIONS ... ceeerieeeiitii e ettt e ettt et e et e et e e e e e e 16
Adding and deleting vertices and edgesccvuiieiiiiiieiii e 24

5. BITOr NANAIING ... 27
Error handling DaSICSoceeeiiiiee e 27
Error DanalErs e 27

i graph_error_handl er _t — Thetype of error handler functions. 27
i graph_error_handl er _abort — Abort program in case of error. 28
i graph_error_handl er _i gnore — Ignore errors.cccvueeevirinneeeennnnnnn. 28
i graph_error_handl er _printignore— Printandignore errors. 28

EITOr COUBS ...ttt ettt e e e e 28
i graph_error_type_t — Error codetype.oveeiiviiieiiiiieeeiineeeei e 28
i graph_strerror — Textual description of an eror.cccceevveeeiinieeennnn. 31

WEINING MESSATES ...t eeeettn i eeeeti e ettt e et et e ettt e e e e et e e et et r et e eaaa e e e et e et enanaeeeenes 32
i graph_war ni ng_handl er _t — Thetype of igraph warning handler func-

L(L0] 0 PPPTUUPPTTPPPR 32
i graph_set _war ni ng_handl er — Installsawarning handler. 32
| GRAPH_WARNI NG — Triggers @Warning.ccceuuueeeeruneeeerineeeeniaeeeeniaaeeens 32
| GRAPH_WARNI NGF — Triggers awarning, with printf-like syntax. 33
i graph_war ni Ng — Triggers @Warning.oeeeeerueeeeminneeeeiineeeenineeeennnns 33
i gr aph_war ni ngf — Triggers awarning, printf-like version.cc.......... 33
i graph_war ni ng_handl er _i gnor e — Ignores all warnings. 34
i graph_war ni ng_handl er _pri nt — Printsall warnings to the standard

< 0 PP 34

AGVANCED TOPICS ... eeeeiie ettt ettt ettt e e ettt e ettt e e et et e e e et e e e rb e eee 35
WIiting €rror NANAIENSeniii e 35
Error handling iNtErMaISuuiiiii e 35
DeallOCaIING MEMONY ... ceiiiieeeeii ettt et e et e et e eeenae e eens 37
Writing igraph functions with proper error handlingccooeviiiiieiiiiiniciinnnnn. 38
[= = 1 (0] £ S PP UPPPTTRPPPPTTRPPPPIN 39

igraph Reference Manual

Error handling and threadscoooviiiiii i 41
6. Memory (AE)allOCatioNcouuiiiiie e e 42
i gr aph_mal | oc — Allocate memory that can be safely deallocated by igraph func-
L0 SR 42
i gr aph_f r ee — Dedlocate memory that was allocated by igraph functions. 42
7. Data structure library: vector, matrix, other datatypescccoevviiiiiiiiiiiiiece e, 44
ADOUL TEMPIBEE TYPES .eveeiii e e e e 44
VA< o (o £ PP 45
About igraph vector t 0bJECtS ..o, 45
ConStructors and DESITUCIONScvvvveiieeeeii et e e 45
INItIAlIZING ElEMENES ..ue e 47
ACCESSING ElEMENES ...uiiii e e e 48
Y=o (o GV Y SR 50
(00 0) /1010 IRV = e (o] ¢ 50
EXChanging ElemMENtSocvvuiiiii e 52
VA= v (o o o= =) 53
VW ECLOI COMPAIISONS ... evtieiein et e eei et e et e e et e e et e e et e e e et e estneeanneeesnerannaees 56
Finding minimum and mMaXimumc.ooeiiieiiiiieiee e e e e e e 59
VA= v (0 g (0] 0= g (== 61
Searching for BlEMENLSccoviiiii e 65
RESIZING OPErAiONSiiei it e e e e e e e et e et e e e e eaanaees 67
S0 1 1] oo 71
Set 0perations 0N SOMEA VECIOISiiuieiiieecii e e e e e e e e e e e e e e e aaaees 71
Pointer vectors (igraph_VeCctor ptr 1)ocovviiiiiiiii i, 72
= (SRR 78
About igraph_ matriX_t ODJECEScivviiii i 78
Matrix conStructors and deStIUCOrSvvvveeieiiiie e e 78
INItIAliZING ElEMENES ..oei e 79
(00 o)V TaTo [17 1 01> 80
Accessing elements Of @ MBaLNIXvvuuiiiiiiieii e 81
Operations 0N rows and COIUMNScvvueiii e e e e e e e e e e e e eenaas 82
[V = Do o = = 1 o] 86
MELTIX COMPAITSONS .. .ivvueiiieeeii ettt e et e e st e e et e et e e et e e st e e et eeaneeat e estnaesanaees 90
ComMbBINING MEITICES ..vuiiii e e e e e e e e 92
Finding minimum and mMaXimumc.ooeiiiieiiiiieiee e e e e aenas 92
= D o o] o= 1= 95
Searching for BlEMENLScciviiiii e 98
RESIZING OPErAtiONSiiiieiiiee e e e e e e e e et e et e e e e eaanaees 99
SPAISE MATICES .. iiteiii et e et e e e e e et e e e e e et e e et e e e et e e et e e et e e et e e e ta e eaaeeanans 101
About igraph_spmatrixX_t ODJECESvuiiiiieiiie e 101
Sparse matrix constructors and destrUCtOrS.cocvvvveviieiiiiieeie e e, 101
Accessing elements of a SParse MEliXceevneviiieiiieeiie e e e e e 102
Iterating over the non-zero elements of a sparse MatrixXcooeevveviiiieiiinerinenns 103
MELIiX QUETY OPEIBHIONS ...evueiieeiiieeii e et e et e e e e e e e et eeet e e et e e st s esaaeeannaees 105
[V = Do o 1= = 0] o 107
Printing SParse MELTICEScvvuu i ei e e e e e e e e et e e e e eees 109
Sparse matrices, another Kindcoooouiiiiiiiiii e 109
ADOUL SPAISE MEITICESivieiiii e e e e e e e e e e e e e e e eanees 109
Creating sparse matriX ODJECEScvvviiiii e 110
Query properties of @ SPArSE MALTIX ...cc.uuieeuneeeiieiiii e e e e e e e e eanas 113
Operations 0N SPArSE MATICESuuevuueiiieeeiee e e e e e e e e e et e e et e e eenes 119
Operations 0N SParse MAtriX ItEratorSeevuueiiiiieeiie e e e e e 124
Operations that change the internal representationccoovevieeviieciiieeeineeen, 127
Decompositions and solving linear SYSteMScoovvviieiiieiiii e, 128
Eigenvalues and GIgENVECIOrSccuuuiiiiiieiiieeeee e e e e e e e e e e e e e eaaeens 134
Conversion to other data tyPeScvvviiiiii e 135
Writing to afile, Or tothe SCreenoevvviiiii e 137
SHACKS ettt 137

igraph Reference Manual

i graph_stack_ init — Initiaizesastack.ccooeeviveiiiiiiiii i, 137
i graph_st ack_destroy — Destroysastack object.c.ccceveviiieeinnnn. 138
i graph_stack reserve — ReESEIVE MEMOIY.ccevueiiinieeineeiiiieeieeeaneenens 138
i graph_st ack_enpt y — Decides whether a stack object isempty. 138
i graph_st ack_si ze — Returnsthe number of elementsin a stack. 139
i graph_stack_cl ear — Removesal edementsfrom astack. 139
i graph_st ack_push — Places an element on the top of astack. 139
i graph_st ack_pop — Removes and returns an element from the top of a
SEBCK. vttt ettt 140
i graph_stack top — Query top element.ccoieeiiiiiiiii i, 140
DOUDIE-ENAEA QUEUESuiiii et e e e e e e e e e e e e e aaeees 140
i gr aph_dqueue_i ni t — Initialize a double ended queue (deque). 140
i gr aph_dqueue_dest r oy — Destroy a double ended queue. 141
i gr aph_dqueue_enpt y — Decide whether the queue isempty. 141
i gr aph_dqueue_f ul | — Check whether the queueisfull. 141
i gr aph_dqueue_cl ear — Remove all elements from the queue. 142
i gr aph_dqueue_si ze — Number of elementsinthe queue. 142
i graph_dqueue_head — Head of thequeue.cccooeviiieiiiiiiinecie e, 142
i gr aph_dqueue_back — Tail of thequeue.ccoeveviiiiiniiii e, 143
i graph_dqueue_pop — Removethehead.cccoeeviiiiiiiiin i, 143
i gr aph_dqueue_pop_back — Removethetailccooeeiiiiiiiincnnnnn, 143
i graph_dqueue_push — Appends an element.ccoooeeiiiiiiiiiineeinneennn, 143
Maximum and MIiNIMUM NEAPSuuiiiii i e 144
i graph_heap_i ni t — Initializes an empty heap object.ccoeeeinn. 144
i graph_heap_init_array — Buildaheap fromanarray.ccun.. 144
i gr aph_heap_dest r oy — Destroys an initialized heap object. 145
i gr aph_heap_enpt y — Decides whether a heap object isempty. 145
i graph_heap_push — Addaneement.ccoooiiiiiiiiiii i, 145
i graph_heap top — Top element.ccooeeeviiiiiiiiiiie e, 146
i graph_heap_del et e_t op — Return and removes the top element 146
i graph_heap_si ze — Number of dlementsccooevviiviiiieiiii i, 146
i graph_heap_reserve — Allocate more memoryc.ccceeevviieeenneennnnnns 147
S 100 /= v (] £ 147
igraph_strvector _init —Initidize......ccoccooveiiiiiiici e, 147
i graph_strvector_copy — Initidization by copying.c..ccoeveiinennnnn. 147
i graph_strvector_destroy — Freealocated memorycccoeeeennnnns 148
STR — Indexing StriNg VECIOISccvuniiiiieii e e e e e e e e e e eee 148
i graph_strvector_get — INdeXingcccooveviiiiiiiiiiie e 148
i graph_strvector_set — Setaneementcccoeeeviiiiiiiiiin e, 149
i graph_strvector_set2 —Setsanelement.ccooveiiiiiii i, 149
i graph_strvect or _renpve — Removesasingle element from a string
LV ot (o TP 150
i graph_strvect or _append — Concatenate two string Vectors. 150
i graph_strvector_clear — Removeall dements..........ccoocevvvviininennnnnns 150
i graph_strvector resize — RESZE.....ccoooeiiiiiiiiiiii e, 151
i graph_strvector_size — Givesthesize of astring vector. 151
i graph_strvect or _add — Adds an element to the back of astring vector. 151
AJACENCY TISES vt e 152
AJACENT VEITICES ..vuiiii e e e e e e e 152
T T (= g = [0 PN 155
Lazy adjacency list fOr VEItiCESocvvviiii e 157
Lazy incidence list for @AgESuiviniiii i 159
Partial PrefixX SUM ITEES ..uu. i e e e e e e e e e 161
i graph_psuntree_init — Initializesapartial prefix sumtree. 161
i graph_psunt ree_dest r oy — Destroys a partia prefix sumtree. 162
i graph_psuntree_si ze — Returnsthe size of thetree.ccoeveenn, 162
i graph_psunt ree_get — Retrievesthe value corresponding to anitemin
11T (== O UPPUTPPN 162

igraph Reference Manual

i gr aph_psunt r ee_sum— Returns the sum of the values of the leavesin the

L= =P 163
i graph_psunt ree_sear ch — Findsanitemin thetree, givenavaue. 163
i gr aph_psunt r ee_updat e — Updates the value associated to an item in the
L= =P 163
8. RANCOM NUMIETS ... e e e e et e e e et e e e et e eeenes 165
About random numbers in igraph, USE CaSESocvviiiiii i 165
The default random NUMDEr gENEIAEOTvvveeiie e e e e aans 165
i graph_rng_def aul t — Query the default random number generator. 165
i graph_rng_set defaul t — Set the default igraph random number gener-
= 0] PSP 165
Creating random NUMDEr gENEIAEONScvveiiiieeie e e e e e e e e et e e e eans 165
i graph_rng_i nit — Initialize arandom number generator. 165
i gr aph_rng_dest r oy — Deallocate memory associated with a random num-
01= 0 (= 1= - (0 PPN 166
i graph_r ng_seed — Set the seed of arandom number generator. 166
i graph_r ng_m n — Query the minimum possible integer for arandom num-
01= 0 (= 1= - (0 PPN 166
i gr aph_r ng_nmax — Query the maximum possible integer for arandom num-
01= 0 (= 1= - (0 PPN 167
i gr aph_r ng_nane — Query the type of arandom number generator. 167
Generating random NUMDBEIScouuiiiii e e e aes 167
i graph_rng_get i nt eger — Generate an integer random number from an
101 £V Z PPN 167
i graph_rng_get uni f — Generate real, uniform random numbers from an
1010 §VZ RSP STPT 168
i graph_rng_get uni f 01 — Generate real, uniform random number from
the UNIt INTEIVAl ... e 168
i graph_rng_get nornal — Normally distributed random numbers 169
i graph_rng_get geom— Generate geometrically distributed random num-
TS e 169
i graph_rng_get bi nom— Generate binomially distributed random num-
TS e 169
i graph_rng_get gamma — Generate sample from a Gammadistribution 170
Supported random NUMDEr gENEIAEOISviveeiiiieii e e e ee e e e e et e e e eanes 170
i graph_rngtype_nt 19937 — The MT19937 random number generator. 170
i graph_rngtype_gl i bc2 — The random number generator introduced in
GNU TIDC 2. oo 171
i graph_rngt ype_r and — The old BSD rand/srand random number genera-
Lo PPN 171
USE CBISES ...ttt ettt ettt ettt ettt et et e et e e e et e e e e e r e e aens 172
Normal (defallt) USEovvuiiii i 172
Reproducible SIMUIGLIONSoiiiieii e 172
Changing the default generatorccouvviiiiii i 172
UsiNg MUILIPIE QENEIAIOTS ... ceviiii e e e e eans 172
EXAMPIE ..t e 173
o a0 (= 1= - (o =T 174
Deterministic graph gENEIatOrScveue e e ee e e e e e e e e e eaens 174
i gr aph_cr eat e — Creates a graph with the specified edges.cc...... 174
i gr aph_smal | — Shorthand to create asmall graph, giving the edges as argu-
001 01U 174
i gr aph_adj acency — Creates a graph from an adjacency matrix. 175
i gr aph_wei ght ed_adj acency — Creates agraph from aweighted adja-
(o= 00y A 0 G 176
i graph_adj | i st — Creates agraph from an adjacency list.coceennee. 177
i gr aph_st ar — Creates a star graph, every vertex connects only to the center. .. 178
i graph_l atti ce — Arbitrary dimensional square lattices.cceuueeeen. 178
i graph_ri ng — Createsaring graph, aone dimensional lattice. 179

Vi

igraph Reference Manual

i gr aph_t r ee — Creates atreein which almost all vertices have the same num-

ber of Children. ... 180

i graph_ful | — Createsafull graph (directed or undirected, with or without

oo 0= IS 181

i graph _full _citation— Createsafull citationgraphcccoeeeennneen. 181

i graph_realize_degree_sequence — Generates agraph with the given

EOrEE SEOUENCE. ...uuiiiiieii et e e e e e e e e e e e e e et e e e et e e et e e e e aneeaen 182

i gr aph_f amous — Create afamous graph by simply providing itsname. 184

i graph_| cf — Createsagraph from LCF notation.c.ccccoveviiiieennnn, 186

i graph_| cf _vect or — Creates agraph from LCF notation. 187

i graph_from pruf er — Generates atree from a Prifer sequence. 187

i graph_at | as — Create asmall graph from the “Graph Atlas’. 188

i graph_de_bruijn— GenerateadeBruijn graph.cccoceeviiiiniiinnennnnn. 189

i graph_kaut z — Generate a Kautz graph.cccoceoeviiiiiiiiiieciiccee e, 189

i gr aph_ext ended_chor dal _ri ng — Create an extended chordal ring. 190
Games:. randomized graph geNEratorsSuiiiiiiiiiii e 191

i graph_gr g_gane — Generates a geometric random graph.c..u.eeee. 191

i gr aph_bar abasi _gane — Generates a graph based on the Barabasi-Albert

10707 1=, SR 191

i gr aph_er dos_renyi _ganme — Generates arandom (Erd#s-Rényi) graph. 193

i graph_watts_strogat z_ganme — The Watts-Strogatz small-world mod-

Bl L e aae 194

i graph_rew re_edges — Rewiresthe edges of a graph with constant proba-

o] PP 194

i graph_rew re_directed _edges — Rewiresthe chosen endpoint of di-

=0 =0 =0 o 1= 195

i gr aph_degr ee_sequence_ganme — Generates arandom graph with agiv-

€N dEJIrEE SEUUENCE. .. evvueeineeiinieeie et e et e e et e e et e e et e e et e sat e e st e e et e aeanaeeannaees 196

i graph_k_regul ar _ganme — Generates arandom graph where each vertex

has the SAME EgIEE. ... civvniii e 197

i graph_static_fitness_ganme — Non-growing random graph with edge

probabilities proportional to node fitNeSS SCOrES.c.vevvviiiiiiieiiieeie e 198

i graph_static_power | aw _gane — Generates a non-growing random

graph with expected power-law degree distributions.cccoeeviiiiiiiiieiineennn. 199

i graph_forest fire_gane — Generates anetwork according to the “for-

LSS B TN 7= 1 1 P 200

i graph_r ewi r e — Randomly rewires a graph while preserving the degree dis-

11 010 1) o VPP 201

i graph_growi ng_random ganme — Generates a growing random graph. 202

i graph_cal | away_traits_game — Simulates agrowing network with

A= 0= G 1 0= PP 202

i graph_est abl i shnment _gane — Generates a graph with a simple growing

MOdEl With VEIEX TYPES. ...vniiiiii e e e 203

i graph_pr ef er ence_gane — Generates a graph with vertex types and con-

gL Yol o (== o Tor s 204

i graph_asynmmetri c_pref erence_gane — Generates agraph with

asymmetric vertex types and connection preferences.ooovvvvvevveeiiiieeineennneenn, 205

i graph_recent degree_gane — Stochastic graph generator based on the

number of incident edges a node has gained recently.ccoooieiiiiiiiiin e, 206

i gr aph_bar abasi _agi ng_ganme — Preferentia attachment with aging of

AL 1 1= PSP 207

i graph_recent degree_agi ng_gane — Preferentia attachment based

on the number of edges gained recently, with aging of vertices. 208

i graph_l astcit_game — Simulates a citation network, based on time

passed since the [ast CItation.cooviiiiiiii i 209

i graph_cited_type gane — Simulates a citation based on vertex types. 210

i graph_citing cited type ganme — Simulates acitation network based

ON VEIEEX LY IBS. ettt ittt e e e e e e et e et e et e e e e e e e en 211

vii

igraph Reference Manual

i gr aph_sbm gane — Sample from a stochastic block model. 212
i gr aph_hsbm ganme — Hierarchical stochastic block model. 212
i graph_hsbm | i st _ganme — Hierarchical stochastic block model, more gen-

< = IRV =T o P 213
i gr aph_dot _product game — Generates arandom dot product graph. 214
i graph_tree_gane — Generates arandom tree with the given number of

1070 (=S PSP 214
i graph_correl at ed_gane — Generates arandom graph correlated to an

EXISHING GIaPN. ©oieii e 215
i graph_correl at ed_pai r _ganme — Generates pairs of correlated random
010 01PN 216

i graph_si npl e_i nterconnect ed_i sl ands_gane — Generatesaran-
dom graph made of several interconnected islands, each island being arandom

0" o VPPN 216
O C7= 10130 g e r="o] =P 218
MICrOSCOPIC UPHALE FTUIES ... cuvi e e e e e e e e e e e 218
i graph_determnistic_optiml _imtation— Adoptastrategy via
deterministic optimal iIMItatioN.ccuiiiiiiiiiiie e 218
i gr aph_nor an_process — The Moran process in a network setting. 219
i graph_roul ette_wheel imtation— Adoptastrategy viaroulette
WHEEl SEIECHION. .ieviiii e 221
i graph_stochastic_imtati on— Adopt astrategy via stochastic imita-
tion with uniform SEIECHION.iiiiii e 222
EPIdEemIC MOTEISoveciii e 224
i graph_si r — Performs anumber of SIR epidemics model runs on agraph. 224
i graph_sir_t — Theresult of one SIR model simulation.ccceeeeennee. 224
i graph_sir_destr oy — Deallocates memory associated with a SIR ssimula-
1000 o 1 0o P 225
11. Vertex and edge selectors and SeqUENCES, ItEratorScouueiiieeiiieeiiiieeiieeeie e e e 226
ADOUL SEIECLONS, ITEIAIOIS ...euvtieieii e 226
VerteX SElECtOr CONSIIUCIONS ...uiiieiteeeeii e et e et e et e e e ere s 226
i graph_vs_all — Vertex set, all verticesof agraph.cccccovvviiiieiinennnn. 226
i graph_vs_adj — Adjacent vertices of avertex.ccooveviieeiiiiiiiiecieeennnn, 227
i graph_vs_nonadj — Non-adjacent vertices of avertex.cccoeeevvneeennn. 227
i graph_vs_none — Empty VEreX Sat.cocvviiiiiiiiiii e, 228
i graph_vs_ 1 — Vertex set withasinglevertex.ccoooeviiiiiniiiincenenn, 228
i graph_vs_vect or — Vertex set based on avector.ccoevevviieiiineennnnn. 229
i graph_vs_vector_snal | — Create avertex set by giving its lements. 229
i graph_vs_vect or _copy — Vertex set based on avector, with copying. 230
i graph_vs_seq — Vertex set, an interval of vertices.ccooccoeveviiieiinnennn, 230
Generic vertex SEleCtor OPEratioNScvvvieeii e e e e e e e 231
i graph_vs_copy — Creates acopy of avertex selector.ccooeevvveeennnnnn. 231
i graph_vs_destroy — Destroy aVvertex Set.cocceveviiiieiiineiiiiecie e, 231
i graph_vs_is_all — Check whether all vertices are included. 232
i graph_vs_si ze — Returnsthe size of the vertex selector.cccoeeeunneis 232
i graph_vs_t ype — Returns the type of the vertex selector. 232
IMmediate VErtEX SEIECLOISuuiiiiiiii e e eaeens 232
i graph_vss_al | — All vertices of agraph (immediate version). 232
i gr aph_vss_none — Empty vertex set (immediate version).cccceeeeenn. 233
i graph_vss_1 — Vertex set with asingle vertex (immediate version). 233
i graph_vss_vect or — Vertex set based on avector (immediate version). 234
i graph_vss_seq — Aninterva of vertices (immediate version). 234
Y 4 (S Q1 1= = 0] =P 234
i graph_vit_creat e — Creates avertex iterator from avertex selector. 234
i graph_vit_destroy — Destroysavertex iterator.cccoeevvvveiiineennnnn. 235
StepPIiNg OVEr the VEITICESvviiiii e 235
| GRAPH VI T_NEXT — NEXE VEIEX. ..evevviieiiiiiieiiiii et e s 236
| GRAPH VIT_END— Areweat theend?c.ooooviiiiiiiiiiiii e, 236

viii

igraph Reference Manual

| GRAPH VI T_SI ZE — Size of avertex iterator.coccveveviiieeiineiiiinecieeennn. 236
| GRAPH_VI T_RESET — Reset a vertex iterafor.c.uvveirieieeereriviinineneeennns 237
| GRAPH VI T_GET — Query the current position.cccoeeeveiiiiiiieeiineeinennn. 237
Edge SEleCtOr CONSIIUCLONSccvuiiii e e e e e e e e e e e e eanas 237
i graph_es _all — Edgeset, all edges.ccocvvvveviiiiiiiiiciii e, 237
i graph_es_inci dent — Edgesincident onagivenvertex.cceeeeen.. 238
i graph_es_none — Empty edge Selector.ocooviiiiiiiiiieiiie e 238
i graph_es_1 — Edge selector containing asingleedge.ccoeevvviveiinnnnns 239
i graph_es_vect or — Handle avector as an edge selector.cceuveeeen. 239
i graph_es_front o — Edge selector, all edges between two vertex sets. 240
i gr aph_es_seq — Edge selector, a sequence of edgeids.ccvvvvvnnennnnn. 240
i gr aph_es_pai r s — Edge selector, multiple edges defined by their endpoints
LI Y= (o OSSPSR 241
i graph_es_pairs_smal | — Edge selector, multiple edges defined by their
ENAPOINES 8S AGUMENES. ...evuiiiiiieiii e e e e e e e e e e e e e e e e e et eeaaeeaanaees 241
i gr aph_es_pat h — Edge selector, edgeidsonapath.ccocoeiieenn, 242
i graph_es_vect or _copy — Edge set, based on a vector, with copying. 242
Immediate 60gE SEIECIONSuuiiii e e 243
i graph_ess_al | — Edge set, all edges (immediate version)cccccuveeeee. 243
i gr aph_ess_none — Immediate empty edge selector.coocevviiiiieinnnn, 243
i gr aph_ess_1 — Immediate version of the single edge edge selector. 244
i graph_ess_vect or — Immediate vector view edge selector. 244
i gr aph_ess_seq — Immediate version of the sequence edge selector. 244
Generic edge SElECtOr OPEratioNSiiiiiieii e e 245
i graph_es_as_vect or — Transform edge selector into vector. 245
i graph_es_copy — Creates acopy of an edge selector.cccooevvveeennnnnnn, 245
i gr aph_es_dest r oy — Destroys an edge selector object.ccoeeeevnnnenn. 246
i graph_es_is_al | — Check whether an edge selector includes all edges. 246
i graph_es_si ze — Returns the size of the edge selector.cccoccveiinnnis 246
i gr aph_es_t ype — Returns the type of the edge selector.ccooceennn. 247
[0 0TI (= - (0PN 247
i graph_ei t _creat e — Creates an edge iterator from an edge selector. 247
i graph_eit_destroy — Destroys an edge iterator.cccoeevvveviineeinnnnnnn. 247
StepPIiNg OVEr the OGBS ..vv.iie e 248
| GRAPH_EI T_NEXT — NEXt €0GE. ..evevvvviiiieeeeeieeiiiiinee e e e e eeeevniiianseeeaeeannnes 248
| GRAPH EI T_END — Areweat the end?ccovvvviiiiiieieiiiicie e 248
| GRAPH_EI T_SI ZE — Number of edgesin theiterator.ccoocvvevevinnnnnn. 248
| GRAPH_EI T_RESET — Reset an edge iterator.ccevvvviiiieeeeeeeiiiiinneenn 249
| GRAPH EI T_GET — Query an edge iterator.cooeeveeiiieiiiieeiiieeiiieeenneens 249
12. Graph, vertex and edge attribULESviiiiiii s 250
The Attribute Handler INterfaceoouviiiiiiii e 250
i graph_attribute_tabl e t — Tableof functionsto perform operations
ON AHMOULES . .eee e 250
i graph_set _attribute_tabl e — Attach an attribute table. 252
i graph_attribute_type t — The possibletypes of the attributes. 253
Handling attribute combination [IStScooiiiiiiiiiic e, 253
i graph_attribute_conbi nati on_i nit — Initialize attribute combina-
10 = SO SO 254
i graph_attribute_conbi nati on_add — Add combination record to at-
tribute comBINGLION [ISt.uiiiii e 254
i graph_attribute_conbi nati on_r enbve — Remove arecord from an
attribute combination TiSt.couiiiiii 255
i graph_attribute_conbi nati on_destr oy — Destroy attribute combi-
= 1o TN T OSSP 255
i graph_attribute_conbinati on_type t — The possible types of at-
tribute COMBDINGLIONS.uiiiiiiii e 255
Accessing attributeS from C ...o.ve i 256
QUENY @IIDULESceie e e e e e e e 257

igraph Reference Manual

Set AHMDULES ..o 270
REMOVE AHIHDULESuieiii e 282
13. Structural properties of Graphsco.viiii e 286

T Lol o] (0] 0= (=== 286

i gr aph_ar e_connect ed — Decides whether two vertices are connected 286
(Shortest)-path related FUNCLIONSoivviiiii e 286

i graph_short est pat hs — Thelength of the shortest paths between ver-

L0 PP 286

i graph_shortest paths_dij kst ra— Weighted shortest path lengths

DEIWEEN VEITICES. .vviiiiiii e e 287

i graph_shortest pat hs_bel | man_f or d — Weighted shortest path

lengths between vertices, allowing negative weights.ccocevviiiiiiiiineciineeennn. 288

i graph_shortest pat hs_j ohnson — Weighted shortest path lengths be-

tween vertices, using Johnson's algorithm.ccooviiii i, 289

i graph_get shortest pat hs — Shortest paths from avertex. 290

i graph_get _shortest pat h — Shortest path from one vertex to another

(0] 0 PP 291

i graph_get shortest paths_dij kst ra— Weighted shortest paths

TrOM @ VEITEX. it et e eees 292

i graph_get shortest path_dijkstra— Weighted shortest path from

0Ne VErteX t0 aNOthEr ONE.iiiiiii e e 294

i graph_get shortest paths_bel | man_f or d — Weighted shortest

paths from a vertex, allowing negative wWeights.cccoovviiiiiii i, 295

i graph_get shortest path_bel | man_f or d — Weighted shortest path

from one vertex t0 @another ONE.ovvveiiieiie e 296

i graph_get _all _shortest_ pat hs — All shortest paths (geodesics) from

2= £ (= PPN 297

i graph_get _all _shortest paths_dij kstra— All weighted shortest

paths (geodesics) from @ VEMEX.uviiiiiicii e 298

i graph_get _all _sinmpl e_pat hs — List all simple paths from one source. .. 299
i graph_aver age_pat h_| engt h — Calculates the average unweighted

shortest path length between all vertex pairs.occeveviiiiiiiiiiiecine e 300
i graph_average_path_| ength_dij kst ra — Caculatesthe average
weighted shortest path length between all vertex pairs.ccoceeveiiiiiiiiiecinnns 301
i graph_path_| engt h_hi st — Create ahistogram of all shortest path
=0T 11 1P 301
i gr aph_di anet er — Calculates the diameter of a graph (longest geodesic). 302
i graph_di anet er _di j kst r a— Calculates the weighted diameter of a
graph using Dijkstra's algorithm.ccocoiiiiiiiii e, 303
i graph_gi rt h — Thegirth of agraph isthe length of the shortest cycleinit. 304
i graph_eccentricity — Eccentricity of some vertices.ccoocvvveeeinnnnns 304
i graph_radi us — Radiusof agraph.cccoovviiiiiii i 305
EffiCIENCY MEASUIESuu it e e e e e e e e eaeas 306
i graph_gl obal _effici ency — Calculatesthe global efficiency of anet-
110 4 P 306
i graph_l ocal _effi ci ency — Caculatesthe local efficiency around each
VEEX 1N @ NEIWOTK. iiiviiee e e e e e 306
i graph_average | ocal effici ency — Calculatesthe average local ef-
fICIENCY 1N @ NEIWOTK. 1.vuiiicii e e e e e e 307
Neighborhood Of @ VEIEXcivuiiiii e 308
i gr aph_nei ghbor hood_si ze — Calculates the size of the neighborhood of
A GIVEN VEITEX. ouuiiiiiiiiii et et e e e e e e e e e e e e e e e et e e et e e e et e e et eaaaees 308
i gr aph_nei ghbor hood — Calculate the neighborhood of vertices. 309
i gr aph_nei ghbor hood_gr aphs — Create graphs from the neighbor-
hood(S) Of SOME VEMEX/VEITICES. .. .cuuiiiiiiiie e e 310
(oo s o g IR 1 1 oSSR 311
L0 L 11 1 o 311
B 141 L S o 312

igraph Reference Manual

Pre-calculated neighborhoods ..., 314
LCTr=To] g oo 4]0 0] 1= o | £ PN 315

i gr aph_subconponent — The vertices in the same component as a given

LTS 0 TP 315

i graph_cl ust er s — Calculates the (weakly or strongly) connected compo-

0TS g R T T= e =" o] TR 315

i graph_i s_connect ed — Decides whether the graph is (weakly or strongly)

(0000101 ot 1= o AP 316

i gr aph_deconpose — Decompose a graph into connected components. 317

i gr aph_deconpose_dest r oy — Freethe memory allocated by

I graph_dECONMPOSE() . ciiiiiiiii e e 317

i gr aph_bi connect ed_conponent s — Calculate biconnected components . 318
i graph_articul ati on_poi nt s — Find the articulation pointsin agraph. ... 319
i graph_bridges — Find al bridgesinagraph.cccooeviiiiiiiiiicciieeennn, 319

DBOIEE SEOUEBINCES .. eviitiiit ettt ettt e e e e e e e r e e e e e e e 320

i graph_i s_graphi cal — Isthere agraph with the given degree sequence? ... 320
i graph_i s_bi graphi cal — Isthere abipartite graph with the given bi-de-

[0 [gs oS o (012 0 (00 2PN 321
i graph_i s_degr ee_sequence — Determines whether a degree sequenceis
1= Lo PSPPSR 322
i graph_i s_graphi cal _degree_sequence — Determines whether a se-
guence of integers can be the degree sequence of some simple graph. 323
CaNtrality MEASUIES ... cevuciii e et et e e e e e e e e e e e e e et e e st e e st esaaeeannaees 323
i graph_cl oseness — Closeness centrality calculations for some vertices. 323
i gr aph_harnoni c_central i t y — Harmonic centrality for some vertices. ... 325
i gr aph_bet weenness — Betweenness centrality of some vertices. 326
i gr aph_edge_bet weenness — Betweenness centrality of the edges. 327
i gr aph_pager ank_al go_t — PageRank algorithm implementation 327
i gr aph_pager ank — Calculates the Google PageRank for the specified ver-
L0 PP 328
i gr aph_personal i zed_pager ank — Calculates the personalized Google
PageRank for the specified VEItICES.oovvviiiiiiiciie e, 329
i graph_personal i zed_pager ank_vs — Calculates the personalized
Google PageRank for the specified VErtices.oooovviiiiiiiiiiiccin e, 330
i graph_constrai nt — BuUrt's CONStraint SCOreS.coeevvuveevnieerinerenneennnnns 332
i gr aph_maxdegr ee — The maximum degree in a graph (or set of vertices). 332
i gr aph_st r engt h — Strength of the vertices, weighted vertex degreein other
110 (o SRR 333
i graph_ei genvector _central i ty — Eigenvector centrality of the ver-
10U UPPPTPPN 334
i graph_hub_score — Kleinberg's hub SCOres.ccccoeveviiiiiiiiiiiiiiccieeenn, 335
i graph_aut hority_score — Kleinerg's authority scores.ccoccunnees 336
i gr aph_conver gence_degr ee — Calculates the convergence degree of
€aCh €dge iN @ graph. ...ieee i 336
Range-limited centrality MEASUIESccuuiiiiiieiii e e e e e 337
i graph_cl oseness_cut of f — Range limited closeness centrality. 337
i graph_harnonic_centrality_ cutof f — Rangelimited harmonic cen-
L= 112U 338
i gr aph_bet weenness_cut of f — Range-limited betweenness centrality. 339
i gr aph_edge_bet weenness_cut of f — Range-limited betweenness cen-
trality Of the BAQES. ...ovnii e 340
100 011 = [[o PRSPPI 341
i graph_centralizati on — Calculate the centralization score from the
NOTE [EVEl SCOTES ...ttt e e e e et e e e eaaaeaees 341
i graph_centralization_degree — Calculate vertex degree and graph
(o0 g 1= T2 (o o SRR 342
i graph_centralization_betweenness — Calculate vertex between-
ness and graph CentraliZationcooeuuieiiiiieii e 343

Xi

igraph Reference Manual

i graph_centralization_cl oseness — Calculate vertex closeness and

graph CENLraliZationccovuiiii e 343
i graph_centralization_eigenvector_centrality— Caculae
eigenvector centrality scores and graph centralizationccooeeeiviiiiieiinnennnn. 344
i graph_centralization_degree_t max — Theoretical maximum for
graph centralization based oN degreecocovviiiii i 345
i graph_centralization_betweenness_t max — Theoretical maxi-
mum for graph centralization based on betweennessccoooeviiiiiiiiineiee, 346
i graph_centralization_cl oseness_t max — Theoretical maximum
for graph centralization based 0N ClOSENESScviiiiiiiiii e 347
i graph_centralization_eigenvector_centrality tmax —The
oretical maximum centralization for eigenvector centralitycoovevivieennnnnn. 348
SIMIAITY MEASUIESciiiciii et e e e e e e e e e e e e e e st e et e eanneees 349
i gr aph_bi bcoupl i ng — Bibliographic coupling.ccoooeviiiiiiiiiineennn.s. 349
i graph_cocitati on — Cocitation coupling.cccoiveiiiiiiiiiiiiiee e, 349
igraph_simlarity_jaccard— Jaccard similarity coefficient for the giv-
S IR 1= ST SPPPPT PPN 350
igraph_simlarity jaccard_pairs — Jaccard similarity coefficient for
QIVEN VEITEX PAITS. tvuueieineeineeii ettt e et seeat e e steestn e eateeat e estnaesanaestnaeeaneasnnaees 351
igraph_simlarity_ jaccard_es — Jaccard similarity coefficient for a
OIVEN €QE SEIECION. .ovniiiiii e e e 352
i graph_simlarity_di ce — Dicesimilarity coefficient. 352
igraph_simlarity_di ce_pairs — Dicesimilarity coefficient for given
(L= 0= G o= £ 353
igraph_simlarity di ce_es — Dicesimilarity coefficient for agiven
EAJE SEIECION. . oueiiii i 354
igraph_simlarity inverse | og wei ghted— Vertex similarity
based on the inverse logarithm of vertex degrees.c.cccovvvviiiiiiiin e, 355
LS. PP PTTPRUPRPT 356
i gr aph_m ni nrum spanni ng_t r ee — Calculates one minimum spanning
tree Of @ graph. .oveii e 356
i gr aph_m ni nrum spanni ng_t ree_unwei ght ed — Calculates one min-
imum spanning tree of an unweighted graph.ccoooeiiiiiiiiiin e 357
i gr aph_m ni nrum spanni ng_tree_pri m— Calculates one minimum
spanning tree of aweighted graph.ccoooiii i 357
i gr aph_random spanni ng_t r ee — Uniformly sample the spanning trees
(o) W0 "o o [P 358
i graph_i s_tree — Decides whether the graphisatree.cc.ccevevnnnnnnn. 359
i graph_to_prufer — Convertsatreetoits Prifer sequencec..c...... 360
Transitivity or clustering COeffiCiEntoviiiiiiiiii e, 360
i graph_transitivity undirected— Caculatesthe transitivity (clus-
tering coefficient) of agraph. ..o, 360
igraph transitivity | ocal _undirected— Caculatestheloca tran-
sitivity (clustering coefficient) of agraph.ccooeviiiiiiii 361
igraph_transitivity avgl ocal undirect ed— Averageloca tran-
sitivity (clustering COEffiCIENt).uieiiiiiiii e 362
i graph_transitivity_ barrat — Weighted transitivity, as defined by A.
BalTEL.eeeeiee e 363
DIreCtEUNESS COMVEISION ..oiutiiiiiiiiiieeeeii e e eett s e e ettt e e eett s e e eeatn s eeeestn s eeeestnaeeeesenaaaeens 363
i graph_to_direct ed — Convert an undirected graph to adirected one 363
i graph_t o_undi r ect ed — Convert adirected graph to an undirected one. 364
S oL o L= 0 0] 0= 1T 365
i graph_| apl aci an — Returns the Laplacian matrix of agraph 365
Non-simple graphs: Multiple and [00p €dgESccovvviiiiiiiiie e, 366
i graph_i s_si npl e — Decides whether the input graph isasimple graph. 366
i graph_is | oop — Findtheloop edgesinagraph.cccooevviiiiiiinennnnenn, 366
i graph_is _nultiple—Findthe multipleedgesinagraph. 367

Xii

igraph Reference Manual

i graph_has_nmnul ti pl e — Check whether the graph has at least one multiple

L= (o T 367

i graph_count _nul ti pl e — Count the number of appearances of the edges

L= Yo =" o o TP 368
Tt (T g I o 1= 1 P 368

i graph_assortativity nom nal — Assortativity of agraph based on

(L = Qo =0 [0 =< TN 368

i graph_assortati vity — Assortativity based on numeric properties of

(L 11 =PSRRI 369

i graph_assortativity degree — Assortativity of agraph based on ver-

L0 Q0 (=0 (== 370
T == PP PP 371

i gr aph_cor eness — Finding the coreness of the verticesin a network. 371
Topological sorting, directed acyclic graphsccooveiiiiiiii e, 371

i graph_i s_dag — Checkswhether agraph isadirected acyclic graph (DAG)

o] (1 o | PP 371

i graph_t opol ogi cal _sorti ng— Calculate a possible topological sorting

Of the Graph. ... 372

i graph_f eedback_arc_set — Calculates afeedback arc set of the graph

USING AITFEIENE ... e 372
Maximum cardinality search and chordal graphsccooeviiiiiii i, 373

i graph_maxi num cardi nal ity_sear ch — Maximum cardinality

LSS o TSP 373

i graph_i s_chordal — Decideswhether agraphischordal. 374
/= T g T P 375

i graph_i s_nmat chi ng — Checks whether the given matching is valid for the

[0 TRY= g e =" o] o TR 375

i graph_i s_nmaxi mal _nat chi ng — Checks whether a matching in agraph

1S3 7= (1 1= P 376

i gr aph_maxi num bi partite_mat chi ng — Calculates amaximum

matching in abipartite graph.cccoiiiii 376
Unfolding a graph int0 @treecvvuiiiii e 377

i graph_unf ol d_tree — Unfolding agraph into atree, by possibly multipli-

(o 1] 00 I Y= o= 377
(@101 00 - 1] 1 378

i gr aph_densi ty — Calculate the density of agraph.ccooveviiiiinennnnn. 378

i graph_reci procity — Calculates the reciprocity of adirected graph. 379

i graph_di ver si ty — Structura diversity index of the vertices 379

i graph_i s_nmut ual — Check whether the edges of adirected graph are mutu-

Ble e aae 380

i graph_avg_near est _nei ghbor _degr ee — Average neighbor degree. ... 381

i graph_get _adj acency — Returnsthe adjacency matrix of agraph 382

i graph_get st ochast i ¢ — Stochastic adjacency matrix of agraph 382

i graph_get stochasti c_spar semat — Stochastic adjacency matrix of a

0 =") o P 383

i graph_get edgel i st — Returnsthelist of edgesinagraph 384

R o) I os Yo == PPN 385

Eulerian cycles and Pathscouuiiiiiiii 385

i graph_i s_eul eri an — Checks whether an Eulerian path or cycle exists 385

i graph_eul erian_cycl e — Findsan Euleriancycleccoocevieeinnn. 385

i graph_eul eri an_pat h — Findsan Eulerianpathccoociiiiiennnnnnn. 386

I =0 AR] (o =P 387

Breadth-first SEAICHcovvei i 387

i graph_bfs — Breadth-first searchcccoooviiiiiiii e, 387

i gr aph_bfs_si npl e — Breadth-first search, single-source version 388

i gr aph_bf shandl er _t — Callback type for BFS function 389
(D= o1 0 T = = o o N 390

i graph_df s — Depth-first searchccococoiiiiiiiiii i, 390

Xiii

igraph Reference Manual

i gr aph_df shandl er _t — Callback type for the DFS function 391
RANAOM WEIKS ... 391
i gr aph_random wal k — Perform arandom walk onagraph 391
i gr aph_random edge_wal k — Perform arandom walk on a graph and re-
tUrn the traverset BAQESu.ivie i 392
16. Cliques and independent VEIEX SELScvuuuiiiiiiiiii e e e e e e e e e e e e 394
L1011 394
i graph_cliques — Findsall or somecliquesinagraph.c..cccoeeeennnnn. 394
i graph_clique_size_ hi st — Counts cliques of each sizein the graph. 394
i graph_cliques_cal | back — Calsafunction for each cliquein the
0" o VPPN 395
i graph_clique_handl er _t — Type of clique handler functions. 396
i graph_| argest _cl i ques — Findsthe largest clique(s) inagraph. 396
i graph_maxi mal _cl i ques — Findsall maximal cliquesinagraph. 397
i graph_maxi mal _cl i ques_count — Count the number of maximal
ClIQUES IN @ GraPh «.ceve e e 398
i graph_maxi mal _cliques_fil e—Findmaximal cliquesand write them
LC0 = T 1| =SSOSR 399
i graph_maxi mal _cl i ques_subset — Maximal cliques for a subset of
INITIAL VEITICES o.vtieiiii e et e et e e e et e e e eatn e eeeees 399
i graph_maxi mal _cl i ques_hi st — Counts the number of maximal
cliques of each Sizeinagraph.coiiiiiii i, 400
i graph_maxi mal _cl i ques_cal | back — Finds maximal cliquesina
graph and calls afunction for each one.ccoooiiiiiiiin 401
i graph_cl i que_nunber — Finds the clique number of the graph. 402
ATAY =T g1 =0 I o 0= 402
i graph_wei ght ed_cl i ques — Findsall cliquesin agiven weight rangein
avertex weighted graph. ... 402
i graph_| argest _wei ght ed_cl i ques — Findsthe largest weight
ClIQUE(S) 1N @ GraPh. ..eieeeeii e e 403
i graph_wei ght ed_cl i que_nunber — Findsthe weight of the largest
weight cligue inthe graph.coooii i 404
INAEPENTENE VEITEX SEES ...uiiiiieii e e e e e e e e e e e e e et e e e e et e e et e e eanaeees 404
i graph_i ndependent vertex_set s — Findsall independent vertex sets
L= Yo =" o o TP 404
i graph_l argest i ndependent vertex_sets — Findsthelargest in-
dependent vertex set(s) iN agraph.coovviiiiii i, 405
i graph_maxi mal _i ndependent vertex_sets — Findsal maximal in-
dependent vertex setS of a graph.veviiiiiin i 406
i graph_i ndependence_nunber — Finds the independence number of the
0=) o VPPN 406
17. Graph iSOMOIPRISIT ...ceueii e e e e e e e 408
The SIMPIE INEEITACE ... i e 408
i gr aph_i sonor phi ¢ — Decides whether two graphs are isomorphic 408
i gr aph_subi sonor phi ¢ — Decide subgraph isomorphism. 409
The BLISS algorithmoouniiii e e 409
i graph_bliss _sh_t — Splitting heuristics for BIisS.ccooovviiviiiineennnnn. 410
i graph_bliss_info_ t — InformationaboutaBLISSrun.............c.cceuneeee. 410
i gr aph_canoni cal _per nut ati on — Canonical permutation using Bliss 411
i graph_i sonor phi c_bl i ss — Graph isomorphism viaBliss..................... 411
i gr aph_aut onor phi sns — Number of automorphismsusing Bliss 412
i gr aph_aut onor phi sm_gr oup — Automorphism group generators using
2] 1TSS 413
The V2 algorithm ... e e 413
i graph_i sonor phi c_vf2 — IsomorphismviaVF2ccooociiiiiinnnnnnnn, 414

i graph_count _i sonor phi sns_vf 2 — Number of isomorphismsviaVF2 .. 415
i graph_get i sonor phi sns_vf 2 — Callect all isomorphic mappings of
EWO GraRIS. oeiiii e 416

Xiv

igraph Reference Manual

i graph_i sohandl er _t — Callback type, called when an isomorphism was

101 o ISP 417
i graph_i soconpat _t — Callback type, called to check whether two vertices

or edges are CoOmMPAtibDIEoiiinii 417
i graph_i sonor phi c_function_vf2 — Thegeneric VF2 interface 418

i gr aph_subi sonor phi ¢c_vf 2 — Decide subgraph isomorphismusing VF2 .. 419
i gr aph_count _subi sonor phi sns_vf 2 — Number of subgraph isomor-

PhISMS USING V2 ..o e e e e aens 420
i gr aph_get _subi sonor phi sns_vf 2 — Return all subgraph isomorphic
L0 T="0] 11 0 P 421
i gr aph_subi sonor phi ¢c_functi on_vf 2 — Generic VF2 function for
subgraph isomorphism problemscooviiiiiii 422
The LAD algorithm e e e e 424
i gr aph_subi sonor phi c¢_I ad — Check subgraph isomorphism with the
LAD algorithm ..oe e 424
Functions for graphs with 3 0r 4 VEItICEScovviiiiii e 425
i graph_i sonor phi c_34 — Graph isomorphism for 3-4 vertices................... 425
i gr aph_i socl ass — Determine the isomorphism class of a graph with 3 or 4
(L 11 =PSRRI 425
i graph_i socl ass_subgr aph — The isomorphism class of a subgraph of a
0" o VPPN 426
i graph_i socl ass_cr eat e — Creates a graph from the given isomorphism
Ol it 427
ULHHEY FUNCHIONS .oeiecc e e e e e e e e e e e e e e e aaeees 427
i graph_pernute_vertices — Permutethevertices...........cco.coceveeinnnnnnnn. 427
i graph_sinmplify _and col ori ze — Simplify the graph and compute
self-loop and edge MUItIPIICILIES.cvvvniiii e 428
T ="o] o] Fo 1 oo [P 429
i graph_vertex_col ori ng_gr eedy — Computes avertex coloring using a
greedy algorithm. ... 429
i graph_col ori ng_greedy_t — Ordering heuristics for greedy graph coloring. 429
19. Graph motifs, dyad census and triad CENSUSccuuviiiiieiiiiiiii e 430
i graph_dyad_census — Calculating the dyad census as defined by Holland and
LOINNAIGL. .. oot 430
i graph_triad_census — Triad census, as defined by Davis and Leinhardt 430
FiNdiNg triangleScouniiiiiii e 432
i graph_adj acent _tri angl es — Count the number of trianglesavertex is
7= 1 0 S 432
igraph_list _triangles—Findall trianglesinagraph.c.cc....... 432
LCTr="o] 0 1 0 410)£ 433
i graph_notifs_randesu — Count the number of motifsin agraph. 433
i graph_notifs_randesu_no — Count the total number of matifsina
0] =" 0 VPPN 434
i graph_notifs_randesu_esti nat e — Estimate the total number of mo-
TS TN @ GraPN. ceecei e e 434
i graph_notifs_randesu_cal | back — Finds motifsin agraph and calls
afunction for each of them.cooii i 435
i graph_notifs_handl er _t — Calback typefori graph_noti f -
s_randesu_cal | back ..o 436
20. Generating layouts for graph drawingccouuiiiiiii e e 437
A I E Yo 10 W0 (= 0 1= - (0] £ 437
i graph_| ayout _r andom— Places the vertices uniform randomly on a
0] 1= 437
i graph_l ayout _circl e — Placesthe vertices uniformly on acircle, in the
(o]0 /= o Y= 1 (= G o PP 437
i graph_| ayout st ar — Generates a star-like layout.cc.coevevinnenn. 438
i graph_| ayout gri d — Placesthe verticeson aregular grid on the plane. 438

XV

igraph Reference Manual

i graph_| ayout gr aphopt — Optimizes vertex layout viathe graphopt al-

o0 11 1 1 1 PPN 439

i graph_| ayout bi partite — Simplelayout for bipartite graphs. 440

The DrL [ayout QENEIAEOTeiii e ee e e e e e e e e aes 440

i graph_l| ayout fruchterman_rei ngol d — Placesthe verticeson a

plane according to the Fruchterman-Reingold algorithm.ccoovevnen. 445

i graph_| ayout kamada_kawai — Places the vertices on a plane according

the Kamada-Kawal algorithm.ccoooiiiiiii e 446

i graph_| ayout _gem— The GEM layout algorithm, as described in Arne

Frick, ANAreas LUGWIQ, ...ccuueiinieiiiieie e e e e a47

i graph_| ayout davi dson_har el — Davidson-Harel layout algorithm 447

i graph_| ayout _nds — Place the vertices on a plane using multidimensional

1S o g RPN 448

i graph_| ayout | gl — Force based layout algorithm for large graphs. 449

i graph_| ayout reingold tilford— Reingold-Tilford layout for tree

01001 450

i graph_layout _reingold tilford_circul ar — Circular Rein-

gold-Tilford 1ayout fOr trEESiii e 451

i graph_| ayout sugi yama — Sugiyama layout algorithm for layered direct-

€d ACYCHIC Graphs. .ovvniiii e 452
I F Yo 0 W0 (= 1 1c - (0 £ 453

i graph_| ayout random 3d — Placesthe vertices uniform randomly in a

CUDE. e 453

i graph_| ayout spher e — Places vertices (more or less) uniformly on a

LS 011 1 454

i graph_| ayout gri d_3d — Placesthe vertices on aregular grid in the 3D

S 0= o PP 454

i graph_l ayout fruchterman_rei ngol d_3d — 3D Fruchterman-Rein-

gold Algorithm. ...ee e 455

i graph_| ayout kamada_kawai _3d — 3D version of the Kamada-Kawai

B o0 0 (= 4 1= - (o | 456
VK= o T aTo I = Yo 11 £ PN 457

i graph_| ayout ner ge_dl a— Merge multiple layouts by usingaDLA al-

o0 111 11 1 1PN 457

21. Reading and writing graphs from and to fil€Scoooiiiiii i, 458

Simple edge list and similar fOrMatScouviiiiiieiiii e 458

i graph_read _graph_edgel i st — Readsan edge list from afile and cre-

AES A GrapN. ooeec 458

i graph_wite graph_edgel i st — Writestheedgelist of agraphto a

B e 458

i graph_read _graph_ncol —Readsa. ncol fileusedby LGL. 459

i graph_write graph_ncol — Writesthegraphtoafilein. ncol format ... 460

i graph_read graph_| gl —Readsagraphfroman. | gl file................... 460

i graph_wite graph_| gl — Writesthegraphtoafilein. | gl format 461

i graph_read_graph_di macs — Read agraph in DIMACS format. 462

i graph_write graph_di nacs — Writeagraphin DIMACSformat. 463
(T = A 0] 2= P 464

i graph_read_graph_graphdb — Read agraph in the binary graph data-

DESE FOIMEL. .. .ceeeii e e 464
L€ Tr=To] 117/ I o) o P 465

i graph_read_graph_graphm — Readsagraph from a GraphML file. 465

i graph_write graph_graphm — Writesthe graph to afilein GraphML

L0110 S PP 465
GIML FOMMEL ...t ettt e e e e et e e e e ean s 466

i graph_read _graph_gm — Read agraphin GML format. 466

i graph_write graph_gm — Writethegraphto astreamin GML format 467
L = Q0 11 12 468

i graph_read _graph_paj ek — Readsafilein Pgjek format 468

XVi

igraph Reference Manual

i graph_write graph_paj ek — Writesagraph to afilein Pgjek format. 469
UCINET'S DL fll@ fOrMEL ...vuiiiiiiiiieeei et e e e 470
i graph_read _graph_dl — Read afileinthe DL format of UCINET 470
LCT=0] 0114 {01 10T TP 470
i graph_write graph_dot — Writethe graphto astream in DOT format 470
22. Maximum flows, minimum cuts and related MEASUrESooevvvvieeriiiiieeeiii e 472
MBXIMUM FLOWS .. e e e e e et e eeeaan s 472
i gr aph_maxf | ow— Maximum network flow between apair of vertices........... 472
i gr aph_maxf | ow _val ue — Maximum flow in a network with the push/rela-
BEl AlgOrithm ..o 473

i gr aph_domi nat or _t r ee — Calculates the dominator tree of aflowgraph 474
i graph_maxfl ow stats_t — A simpledatatype to return some statistics

FrOM TG e 475
CULS @nd MINIMUM CULS ... eeieiiie e e et e e e e et e e et s e e e et e e eaten e eenenn s 475
i graph_st_m ncut — Minimum cut between a source and a target vertex 475
i graph_st_m ncut_val ue — Theminimumstcutinagraph 476
i graph_al | st _cuts — List al edge-cuts between two vertices in a directed
0") o P a77
i graph_all st _m ncuts — All minimum st cuts of adirected graph 478
i graph_m ncut — Calculatesthe minimumcut inagraph. 479
i graph_m ncut _val ue — Theminimum edge cut inagraph 480
i graph_gonmory _hu_tree — Gomory-Hutree of agraph. 480
(000107 o 1AV 1 PN 481
i graph_st _edge_connecti vi t y — Edge connectivity of apair of ver-
10U UPPPRPPN 481
i gr aph_edge_connecti vi t y — The minimum edge connectivity in a
0] =") o VPPN 482
i graph_st_vertex_connecti vity — Thevertex connectivity of apair of
(L 11 =PRI 482
i graph_vertex_connecti vity — Thevertex connectivity of agraph 483
Edge- and vertex-digoint pathscooouiiiiiiiii e 484
i gr aph_edge_di sj oi nt _pat hs — The maximum number of edge-digjoint
paths BEtWEEN tWO VEITICES.ivvi i 484
i graph_vertex_disjoi nt _pat hs — Maximum number of vertex-disjoint
paths BEtWEEN tWO VEITICES.ivvi i 485
Graph adhesion and CONESIONcouuiiiii i e e e 485
i gr aph_adhesi on — Graph adhesion, thisis (almost) the same as edge con-
1= 1Y PP 485
i gr aph_cohesi on — Graph cohesion, thisis the same as vertex connectivity. .. 486
CONESIVE DIOCKS ...t e et e e e e eaeans 487
i gr aph_cohesi ve_bl ocks — ldentifies the hierarchical cohesive block
SETUCTUrE OF @ graPh «.ceve e e e 487
23, VEITEX SEDAIAIONS .ttt ettt e e e e e e e e e et e et e e e e e e 4388
i graph_i s_separ at or — Would removing this set of vertices disconnect the
0100 1P 488
i graph_i s_m ni mal _separ at or — Decides whether a set of verticesisamini-
0= IS () P 488
igraph_all _mninmal st _separators — Listal vertex setsthat are minimal
(S,t) separators for SOME S aNd t. ...vu.iiveiii i 489
i graph_m ni num si ze_separ at or s — Find all minimum size separating ver-
(S G = £ PP PPRP 489
i graph_even_tarjan_reducti on— Even-Tarjan reduction of agraph 490
24. Detecting COMMUNILY SITUCTUIEvvii e e e e e e e e e e e e e aaaas 492
Common functions related to COMMUNItY SEIUCIUIEccvvviiiieiiieiiii e e 492
i gr aph_nodul ari t y — Calculate the modularity of a graph with respect to
SOME CIUSLErS OF VEIEX TYPES. 1.vuuiiiieiiiieeeiee i ee e e e e e e e e e e e e e aanas 492
i graph_nodul arity_natri x — Calculate the modularity matrix 493

XVii

igraph Reference Manual

i graph_comunity_opti nmal _nodul ari t y — Calculate the community

structure with the highest modularity valuecoccooviiiiiiiiiiie e 494
i graph_comunity_to_nenber shi p — Create membership vector from
community Structure dendrogramuueveueeeine e e e e e e e 495
i graph_r ei ndex_nenber shi p — Makesthe IDs in amembership vector
o001 1] o TH o 1 = PSP 496
i gr aph_conpar e_comuni ti es — Compares community structures using
VATOUS MELTICS .. eevtiie ettt e ettt e ettt e et e e et e e e et r e e e et n e e e et neeeaeanneeeennns 496
i graph_split_join_di stance — Calculates the split-join distance of two
COMMUNILY SETUCEUIES ...ovuiiiieiiiee e e et e e e e e e e e e e e e et e e et e e aa e eanes 497
Community structure based on statistical mechanicscccoocoviiiiiiiinii e 498
i graph_comuni ty_spi ngl ass — Community detection based on statisti-
CAl MECNANICS ...ttt e e e e e e e et e e e e b 498
i graph_comunity_spi ngl ass_si ngl e — Community of asingle node
based on statistical MEChANICSviiiiiii e 500
Community structure based on eigenvectors of MatriCeSovevviieiiiecii e, 501
i graph_comuni ty_| eadi ng_ei genvect or — Leading eigenvector
community finding (Proper VErSION).ccceuueeiiieiiieeeiie e e e e e e e e eaens 502
i graph_comunity_| eadi ng_ei genvector _cal | back_t — Call-
back for the leading eigenvector community finding method.ccocceen. 504
i graph_| e_comunity_to_nenber shi p — Vertex membership from the
leading eigenvector COMMUNILY SEIUCIUIEccuuiiiiiieiiiiecie e e e e e 504
Walktrap: Community structure based on random walksccoooeiiiiiiiniinens 505
i graph_comuni ty_wal kt r ap — Thisfunction is the implementation of
the WalKtrap COMMUNILYcouuiiiiieiie e e e e e 505
Edge betweenness based community detectionccoevuieiiiiiiiiiiciie e, 506
i graph_comuni ty_edge_ bet weenness — Community finding based on
€dge DEIWEEINNESS.oveci e 506
i graph_comunity_eb _get ner ges — Calculating the merges, i.e. the
dendrogram for an edge betweenness community Structure.ccoeveevneeennnn. 508
Community structure based on the optimization of modularityc.cccovviiineinnnn. 509
i graph_comuni ty_fast greedy — Finding community structure by
greedy optimization of MOAUIAILY.ccuuiiiiiiiiii e 509
i graph_comunity_mul til evel — Finding community structure by mul-
ti-level optimization of modularity.cccciiiiiiiiiiii s 510
i graph_comuni ty_| ei den — Finding community structure using the Lei-
den algorithm. ... 511
FIUID COMIMUNITIES ...t e et e e e et e e e eaa e e e eaenns 512
i graph_comunity fluid _comunities — Community detection based
on fluids interacting on the graph.cccoiiiii i 512
(= o1 I o 0] o= = (o) [N 513
i graph_comuni ty_| abel propagati on — Community detection based
ON label Propagation.ccuuiiiiieiiii e e e 513
The INfFOMAP algorithmccoon e 514
i graph_comuni ty_i nf omap — Find community structure that minimizes
the BXPECIEA ... 514
P T =0 | = (P 516
F g1 oo [0 ot [o USSP 516
Performing graphlet decCompoSItioncouuiiiiiiiiiiii e 516
i graph_gr aphl et s — Calculate graphlets basis and project thegraph onit 516
i graph_gr aphl ets_candi dat e_basi s — Calculate a candidate
raphletS DESIS ... ccve i 517
i graph_gr aphl ets_proj ect — Project agraph on agraphletsbasis........... 517
26. Hierarchical random graphsooiiiiiiiii e 519
F g1 oo [0 ot [o USSP 519
REPIESENtING HRGS ... covniiiii e e e e e aaes 519
i graph_hr g_t — Data structure to store a hierarchical random graph 519
i graph_hrg_init — Allocate memory for aHRG.c.cccoviiiiiiiiinciinns 520

XViii

igraph Reference Manual

i graph_hr g_destr oy — Dedlocate memory for an HRG.ccenneee 520
i graph_hr g_si ze — Returns the size of the HRG, the number of leaf nodes. ... 520
i graph_hrg resize — ResizeaHRG.ccooeeiviiiiiiiin e, 521
FItiNG HRGS . .cviiii e e e e e et e e e eaaas 521
i graph_hrg_fit — Fitahierarchical random graph model to a network 521
i graph_hr g_consensus — Calculate a consensus tree for aHRG. 521
L |00 o 11 o P 522
i graph_hr g_sanpl e — Sample from a hierarchical random graph model 522
i gr aph_hr g_gane — Generate a hierarchical random graph 523
Conversion to and from igraph graphscoeeeiiiiiiii e 523
i gr aph_hr g_dendr ogr am— Create a dendrogram from a hierarchical ran-
OM Graph. ..o 523
i graph_hr g_creat e — Create aHRG from an igraph graph. 524
Predicting MiSSING €AOESc.uiii e e 524
i graph_hrg_predi ct — Predict missing edgesin a graph, based on HRG
10707 1=, SPPPPTSPPN 524
27. SPECtral COArSE graiNiNgevuuueeeueeei et eeee et e e e e e e e e et e e st aeeat e e et e e et e eeanaeeeneenen 526
g1 [0t [o PP 526
SCG N BIIER o 526
Functions for performing SCGccoiiiiiiiiii e 527
REFEIENCES ... e et 527
S Ol C R 1o 1o = PP 527
i graph_scg_adj acency — Spectral coarse graining, symmetric case. 527
i graph_scg_st ochast i ¢ — Spectral coarse graining, stochastic case. 529
i graph_scg_| apl aci an — Spectral coarse graining, Laplacian case. 531
i graph_scg_groupi ng — SCG problem SoIVEr.ccovviiiiiiiiiiiiiineiies 533
i graph_scg_seni proj ect or s — Compute SCG semi-projectors for a giv-
L= T 0= 11 1o o TS PN 535
i graph_scg_norm eps — Calculate SCG residuals.ccocevvveiiiierinnnnnn. 536
28. Embedding Of graphiscouuiiii e 538
Spectral eMbBEAddiNGooiiiii e 538
i graph_adj acency_spectral _enbeddi ng — Adjacency spectral em-
BEAING ..eci e 538
i graph_l apl aci an_spectral _enbeddi ng — Spectral embedding of the
Laplacian Of @ graphocvvniiiii e 539
i graph_di m sel ect — Dimensionality selectioncccccccoiviiiieiinennnn, 540
A B € =10 a0 o< = (0] &= T 542
UnNion and INEEIrSECHIONuuuieiiiii et e e e e e et e e e e et e e e eataaeeeees 542
i graph_di sj oi nt _uni on — Creates the union of two digoint graphs 542
i graph_di sj oi nt _uni on_many — The digint union of many graphs. 542
i gr aph_uni on — Calculates the union of two graphs.cccoiviiiininnnns 543
i gr aph_uni on_nany — Creates the union of many graphs.ccccceeen.e. 544
i graph_i ntersecti on — Collect the common edges from two graphs. 544
i graph_i ntersecti on_many — Theintersection of more than two graphs. .. 545
Other SEt-11KE OPEratOrSvu i e e e e e e e e e aans 546
i graph_di f f er ence — Calculate the difference of two graphs 546
i gr aph_conpl enent er — Create the complementer of agraph 546
i gr aph_conmpose — Calculates the composition of two graphs 547
MISCEIANEOUS OPErALONS .. cvvueiieeei e et e e e e e e e e e e et e e et e e ean e eaes 548
i gr aph_connect _nei ghbor hood — Connects every vertex to its neighbor-
P00 ... e 548
i graph_contract_verti ces — Replace multiple vertices with asingle
(0] 0 PP 548
i graph_i nduced_subgr aph — Creates a subgraph induced by the specified
AL 11 =SSP 549
i graph_l i negraph — Create the line graph of agraph.c.occevevin 550
i graph_si mpl i f y — Removesloop and/or multiple edges from the graph. 550

XiX

igraph Reference Manual

i gr aph_subgr aph_edges — Creates a subgraph with the specified edges

and their ENAPOINES.u.iiii e e e e e e e 551
30. Using BLAS, LAPACK and ARPACK for igraph matricesand graphscccceeeuvneens 552
BLAS iNterface in igraphooovniiii e 552
i graph_bl as_ddot — Dot product of two VECLOrS.cocevvveiiiveiiieeein, 552
i graph_bl as_dgenv — Matrix-vector multiplication using BLAS, vector
A7 = T oo PP 552
i graph_bl as_dgenv_ar r ay — Matrix-vector multiplication using BLAS,
S VAV = o o P 553
LAPACK interface in igraphoooun i e 553
Matrix factorization, solving linear SYStEMSc.vviiviiiiiiiciii e 554
Eigenvalues and eigenvectors of MatriCeScccuvviiiiieiiii i ee e e 555
ARPACK interface in igraphooiiii e 560
Datal SITUCLUIES ...ttt e e e eees 560
ARPACK SOIVEIS ...eviiiiiii et e aeans 566
31. Bipartite, i.e. tWO-MOdE GraphScive e e 569
Bipartite NEtWOrks in igraphcooviiii i 569
Create tWO-MOTE NEEWOTKSvvieeiiii ettt e e et e et e eeaaan s 569
i graph_create_bipartite— Createabipartitegraph.cceeeann. 569
i graph_full _bipartite— Createafull bipartite network. 570
i graph_bi partite_ganme — Generate a bipartite random graph (similar to
ErAHS- RENYI). .o 570
INCIAENCE MALTICES ...ttt e et e e et s e e e et e e e e aaa e e eeenes 571
i graph_i nci dence — Creates a hipartite graph from an incidence matrix. 571
i graph_get i nci dence — Convert a bipartite graph into an incidence ma-
11 SO SPPPPT PPN 572
Project two-mode graphiscovvn i 573
i graph_bi partite_projection_size — Calculate the number of ver-
tices and edges in the bipartite projections.cccoveviiieiiiiiiii e, 573
i graph_bi partite_projecti on— Create one or both projections of abi-
partite (two-mode) NEIWOIK.oiiiii e 574
Other operations on bipartite graphsooovviiiiiii e 575
i graph_i s_bi partite — Check whether agraph is bipartite. 575
32. Advanced igraph programiMingeueeeuieeiiieeiiie e e e e e e e e e s e et e e e e raneeaenns 576
Using igraph in multi-threaded programscccoeeviiiiiiii e 576
| GRAPH_THREAD_SAFE — Specifies whether igraph was built in thread-safe
1070 [PP 576
Thread-safe ARPACK [IBraryc.ooiiiiiiiii e 576
Thread-safety of random NUMbEr gENEXatOrSvvvviiieeii e 576
Progress handlerScoouiiiii e 576
ADbout progress handlersviiiii i 576
Setting up progress hanNdlersvviiiiii e 577
Invoking the progress handlercoocouveiii i e 578
Writing progress handlersooovueiii i 579
Writing igraph functions with progress reportingcooeveveeeiieeiiiieeiieeeieeeens 580
Multi-threaded Programsccuueiii e e e aens 580
SEAEUS NANAIEIS ... e 580
S [0S = 010111 1o [N 580
Setting up Status hanNdIErsiiiiei e 580
Invoking the status handlercooviiiii i 581
33. Non-graph related fUNCHIONSiiiiicic e e e e e 584
Igraph VEISION NUMDEY ... e e e e e e e ea e eaas 584
i graph_ver si on — Return the version of theigraph Clibrary 584
RUNNINg Mean Of @ tiMeE SENEScvvi i e 584
i gr aph_runni ng_nean — Calculates the running mean of avector. 584
Random sampling from very [0ng SEQUENCESccovviiiiiieiiieei e e 585
i gr aph_random sanpl e — Generates an increasing random sequence of in-
[0S0 = £ PSPPI 585

XX

igraph Reference Manual

Random sampling of spatial POINESccuuiiiiiiiiiiec e e 586
i gr aph_sanpl e_spher e_sur f ace — Sample points uniformly from the
SUMfACE OF @ SPNEIE . cove i 586
i gr aph_sanpl e_spher e_vol ume — Sample points uniformly from the
VOIUME Of @ SPNEIE .eei e 586
i graph_sanpl e_diri chl et — Sample pointsfrom a Dirichlet distribution .. 587
Convex hull of aset of poiNtS ON APIANEccvviiiiiieiiiie e, 588
i graph_convex_hul | — Determines the convex hull of agiven set of points
INThE 2D PlaNe ...cee i 588
Fitting power-law distributions to empirical data.............ccooeeiiiiiiiiiiii e 588
igraph_plfit_result t — Result of fitting a power-law distribution to a
A< ot (o SRR PPN 588
i graph_power | aw fit — Fitsapower-law distribution to a vector of num-
TS e 589
34. Licenses for igraph and thismanualccoooiiiiiii i, 591
THE GNU GENERAL PUBLIC LICENSEouiiiiiiiiieieeiieeee e 591
PrEambIE ... 591
GNU GENERAL PUBLIC LICENSEcoiiiiiiieiie e 591
How to Apply These Terms to Your New Programsccoeeeveevinieviineeennnnnn, 594
The GNU Free DOcUMENtation LICENSEuuueiiiiiiieeiiiiiee et e et e e e e e eeiin e eeees 595
0. PREAMBLEuiiii e 595
1. APPLICABILITY AND DEFINITIONS ...ttt 596
2. VERBATIM COPYING ...iiiiiiiiiiiiie ettt eeeanns 597
3. COPYING IN QUANTITY ittt e e e s 597
4. MODIFICATIONS ...ttt e et eeeaa s 597
5. COMBINING DOCUMENTSootiiiiiiiiiieciiis e 599
6. COLLECTIONS OF DOCUMENTSuuiiiiiiiiieiiiine et 599
7. AGGREGATION WITH INDEPENDENT WORKScoooviiiiieiiiiineeeciie, 599
8. TRANSLATION .uiiiiiiiiet ittt e e e e e e e eaanns 599
9. TERMINATION ..ottt e e e e s 600
10. FUTURE REVISIONS OF THIS LICENSEooiiiiiiieiiiii e 600
G.1.1 ADDENDUM: How to use this License for your documents 600
g0 1= SR 601

XXi

List of Examples

4.1. Fileexanpl es/ si npl e/ i graph_enpty. C ..ccoooeiiiiiiiiiiii e 14
4.2. Fileexanpl es/ si npl e/ i graph_COpY. C ..o.uiiiiiiiiiiiiiii e 15
4.3. Fileexanpl es/ si npl e/igraph_get _€id. Cccoooiiiiiiiiiiiiiiiic e, 19
44. Fileexanpl es/ si npl e/igraph_get _eids. C ...ccoooiiiiiiiiiiiiiiiiii e, 20
45. Fileexanpl es/ si npl e/ i graph_nei ghbors. Cc.ocoviiiiiiiiiiii e, 22
4.6. Fileexanpl es/sinmple/igraph_is_directed. Cccoooriiiiiiiiiiiiiiiiiniiiees 23
4.7. Fileexanpl es/ si npl e/ i graph_degree. Ccccoooiiiiiiiiiiiiiiiie e 24
4.8. Fileexanpl es/ si npl e/ i graph_add_edges. C ...cccooeveiiiiiiiiiiiiiii e 25
4.9. Fileexanpl es/ si npl e/ i graph_add_verti CeS. C ...cccoviiiiiiiiiiiiiiniii e, 25
4.10. Fileexanpl es/ si npl e/ i graph_del ete_edges. Ccccooveviiiiiiiiiiiiniciiiiineee, 26
4.11. Fileexampl es/ si mpl e/ i graph_del ete_vertiCes. Cccoooeiiiiiiiiiieiiiinnennnns 26
6.1. Fileexanpl es/sinmpl e/igraph_free. c ..., 42
7.1. Fileexanpl es/ si npl e/ i graph_fi sher _yates_shuffle.ccccccoeiiiiinnnnnn. 53
7.2. Fileexanpl es/ si npl e/ i graph_vector _ptr_SOort.cC ...ccooeiiriiniiiininneeiennnnnn. 58
7.3. Fileexanpl es/ si npl e/ i graph_vector _ptr_Sort.ccccooveiiniiiiiiiinneennnnenn. 59
7.4. Fileexanpl es/ si npl e/ i graph_vector _ptr_Sort.C ...cccoieriinieiininneeiennnnnn. 77
7.5. Fileexanpl es/ si npl e/ i graph_sparSemBt . Ccccooveiiiiiiiiiiiiiiieeee e 110
7.6. Fileexanpl es/ si npl e/ i graph_sparsemat 3. Cccoovvviiiiiiiiiiiiiiienii e 110
7.7. Fileexanpl es/ si npl e/ i graph_sparsemat 4. Ccccooeeviviiiiiiiiiinieiiiieecie 110
7.8. Fileexanpl es/ si npl e/ i graph_sparsemat 6. Ccooeevvviiiieiiiiinieiiiiiieeeciien 110
7.9. Fileexanpl es/ si npl e/ i graph_sparsemBt 7. Cccoovvviiiiiiiiiiiiieeeiii e 110
7.10. Fileexanpl es/ si npl e/ i graph_sparsemat 8. Coccvvviviiiiiiieiiiiiecei, 110
7.11. File exanpl es/ si mpl @/ dQUEUE. € ..coovviniiiiiiiieiii e 140
7.12. Fileexanpl es/ sinmpl e/ i graph_Strvector. C ...ccoooovviiiiiiiiiiiiiieieeei, 147
7.13. Fileexanpl es/sinmpl e/ adj | i St. C .ooeuuiiiiiiiiii e 152
8.1. Fileexanpl es/ si mpl e/ random S€ed. €ccuuiiiiiiiiiiiiiii e 173
9.1. Fileexanpl es/sinpl e/igraph_cCreat . Coooeeviiiiiiiiiiiiiiii e 174
9.2. Fileexampl es/sinmpl e/igraph_small . C ..o 175
9.3. Fileexanpl es/ si npl e/ i graph_adj aCeNCY. C ...ccovvviiiiiiiiiiiiiiiiiecii e 176
9.4. Fileexanpl es/ si npl e/ i graph_wei ght ed_adj acency. cccccoeeeviiiieinnns 177
9.5. Fileexanmpl es/ simpl e/ i graph_Star. C ...cooooiiiiiiiiiiii e 178
9.6. Fileexanpl es/ sinmpl e/ i graph_ring. C ...cooooiiiiiiiiiii e 180
9.7. Fileexanmpl es/ sinmpl e/ i graph_tree. C ..o 180
9.8. Fileexampl es/simpl e/igraph_full.cC ..o 181
9.9. Fileexanpl es/ simpl e/igraph_| cf . C .o 187
9.10. Fileexanpl es/ si mpl e/ i graph_at] as. Cc.occeviiiiiiiiiiiii e 189
9.11. Fileexanpl es/ si mpl e/ i graph_grg_game. Cccccoiiieiiiiinieiiiieeee e 191
9.12. Fileexanpl es/ si npl e/ i gr aph_barabasi _ganme. ¢ccooveviiiiiiiiiiiinnn, 193
9.13. Fileexanpl es/ si npl e/ i graph_barabasi _ganme2. ¢ccooeveeiiiiiiiiiiiiinnns 193
9.14. Fileexanpl es/ si npl e/ i graph_erdos_renyi _game. C ...cccoeceevevvineiinnenennnnns 193
9.15. Fileexanpl es/ si npl e/ i gr aph_degree_sequence_game. Ccccoeeevuneennnn. 197
10.1. Fileexanpl es/ si npl e/ i graph_determ ni stic_optimal _imtation.c. 219
10.2. Fileexanpl es/ si npl e/ i graph_roul ette_wheel _imitation.c 222
10.3. Fileexanpl es/ si npl e/ i graph_stochastic_inmtation.ccccoeoeeennnn. 224
11.1. Fileexanpl es/ si npl e/ i graph_vs_nonadj . Ccccccoveveriiiiiiiiiinieiiiie e 228
11.2. Fileexanpl es/ si npl e/ i graph_VS_VeCt Or. Ccccoovviiiiiiniiiiiinieiei e 229
11.3. Fileexanpl es/ si npl e/ i graph_VS_S€Q. C ..cccuiiiiiiiiiiiiiiiiieeeie e 231
11.4. Fileexanpl es/ sinpl e/ i graph_esS_pai I'S. C ..coccveriiiiiiiiiiieeiiieece e 241
12.1. Fileexanpl es/sinpl e/ catt ri bUt €S. C .cooeiiiiiiiiiiiiii e, 257
12.2. Fileexanpl es/sinpl e/ cattri but €S2. C ...coovviiiiiiiiiiiii e 257
12.3. Fileexanpl es/sinpl e/ cattri but €S3. C ..ocovvviiiiiiiiiii e, 257
12.4. Fileexanpl es/sinpl e/ cattri but €S4. C ...coouviiiiiiiiiiiii e 257
13.1. Fileexanpl es/ si mpl e/ di j KSTra. C .oovevuiiiiiiiii e 288
13.2. Fileexanpl es/sinpl e/ bel I man_ford. Ccccoooeiiiiiiiiiiiii e, 289
13.3. Fileexanpl es/ si npl e/ i graph_get _shortest _paths.Cccooeviiiinnnnnnn. 291

XXii

igraph Reference Manual

13.4. Fileexanpl es/ si npl e/ i graph_get _shortest paths_dijkstra.c

13.5. Fileexanpl es/ si npl e/ i graph_get all _shortest _paths_dijkstra.c. 299

13.6. Fileexanpl es/ si npl e/ i graph_average _path_length.cccooooennnn. 300
13.7. Fileexanpl es/ si npl e/ i graph_grg _gamB. Ccooevvieeiiiieiiiiiiiie e 301
13.8. Fileexanpl es/ si npl e/ i graph_diameter.cccooeviiiiiiiiiiiii i 303
13.9. Fileexanpl es/sinple/igraph_girth.ccccooiiiiiiiiiiiii e, 304
13.10. Fileexanpl es/ si nmpl e/ i graph_eccentriCity.C ...ccooviiiiiiiiiiiiiiiniiinneennnnn, 305
13.11. Fileexanpl es/ sinpl e/igraph_radi US. Cccoocoiiiiiiiiiiiiiiii e 306
13.12. Fileexanpl es/ si npl e/ i gr aph_deconpoSe. Cccceevviiiiiiiiiiiii e 317
13.13. Fileexanpl es/ si npl e/ i gr aph_bi connect ed_conponents. c 319
13.14. Fileexanpl es/ si npl e/ i graph_pagerank. Ccccocccoviiiiiiiiiiiiiieeee 329
13.15. Fileexanpl es/ si npl e/ ei genvector_centrality.C ...ccoooviiiiiiiiiiiinnnnnnnn. 335
13.16. Fileexanpl es/ sinpl e/ centrali zati on. Cccoeeeiiiiiiiiiiii i 342
13.17. Fileexanpl es/ si npl e/ i graph_cocitati on. Cccooveviniiiiiiiiiniiieees 349
13.18. Fileexanpl es/ si npl e/ i graph_cocitati on. Cccooveviiiiiiiiiiiiicieeeis 350
13.19. Fileexanpl es/sinple/igraph_simlarity.Cccccooiiiiiiniiiiniiiiiniiiineins 351
13.20. Fileexanpl es/sinple/igraph_simlarity.cCccccoooriiiiiiiiiiiiiiiiiiinennnns 351
13.21. Fileexanpl es/sinple/igraph_simlarity.Ccccoooriiiiniiiiniiiiniiiinennnns 352
13.22. Fileexanpl es/sinple/igraph_simlarity.Cccccooiriiiiniiiiiiiiiiniiiinennns 353
13.23. Fileexanpl es/sinple/igraph_simlarity.Cccccoiriiiiniiiniiiiiiiiiineinns 354
13.24. Fileexanpl es/sinple/igraph_simlarity.Cccccooiiiiiiniiiiniiiiiiiiinennns 355
13.25. Fileexanpl es/sinple/igraph_simlarity.Cccccooiiiiiiiiiiiniiiiiiiinens 356
13.26. Fileexanpl es/ si npl e/ i graph_m ni num spanning_tree.ccce.c...... 357
13.27. Fileexanpl es/ si npl e/ i graph_m ni num spanning_tree.ccc......... 358
13.28. Fileexanpl es/ sinpl e/igraph tree.c ...cccooiiiiiiiiiiiiiiiiiiecie e 360
13.29. Fileexanpl es/sinmpl e/igraph_transiti vity.C ...cccoiiiiiiiiiiiiniiinnennnnn, 361
13.30. Fileexanpl es/ si npl e/ i graph_to_undirected. Cccoeeiiiiiiiiiniiiiinninnnns 365
13.31. Fileexanpl es/ si npl e/igraph_laplacian. ccccoeviviiiiiiiiiiiniineees 366
13.32. Fileexanpl es/ sinpl e/igraph_i s 1 00P. C .ccooveiiiiiiiiiiiiiiiie e 367
13.33. Fileexanpl es/sinmple/igraph_is multiple.Cccccooniiiiiiiiiiiiiinennnnnn, 367
13.34. Fileexanpl es/ si nmpl e/ i graph_has _multiple.c ...ccooriiiiiiiiiiiiiniinnnnnn, 368
13.35. Fileexanpl es/ sinpl e/ assortati Vit y. C .cocccoiviiiiiiiiiiiiiiicie e 369
13.36. Fileexanpl es/ sinpl e/ assortati Vit y. C .cocccovviiiiiiiiiiiiiiiin e 370
13.37. Fileexanpl es/ sinpl e/ assortati Vit y. C .cocccovviiiiiiiiiiiiiiecie e 371
13.38. Fileexanpl es/ si npl e/ i graph_topol ogi cal _sorting.cccoeeeeunnnrnnnn. 372
13.39. Fileexanpl es/ si npl e/ i graph_feedback_arc_set.cCccoeeeviiiiinnnennnnn. 373
13.40. Fileexanpl es/ si npl e/ i graph_feedback_arc_set _ip.C ...cccccceenrrnnnnnnnn. 373
13.41. Fileexanpl es/ si npl e/ i graph_maxi nrum bi partite_matching.c 376
13.42. Fileexanpl es/ si npl e/ i graph_maxi nrum bi partite_matching.c 376
13.43. Fileexanpl es/ si npl e/ i graph_maxi nrum bi partite_matching.c 377
13.44. Fileexanpl es/ sinmpl e/igraph_reci proCity. C ..ccccooviviiiiiiiiiiiiieiineeennnn, 379
13.45. Fileexanpl es/ sinpl e/igraph_KNN. Cccoooiiiiiiiiiiiiiic e 382
15.1. Fileexanpl es/sinple/igraph_bfs.C ..o, 388
15.2. Fileexanpl es/ si npl e/ i graph_bfs _call back.cccc..oiviiiiiiiinl 388
15.3. Fileexanpl es/ si npl e/ i graph_bfs sinple.c ...cccooiiiiiiiiiiiiii 389
16.1. Fileexanpl es/ si npl e/ i graph_Cli queS. C ...cccovviiiiiiiiiiiiiii e, 394
16.2. Fileexanpl es/ si npl e/ i graph_maxi mal _cliques.Cccooveviiiiiiiiieiiinennnnn. 398
16.3. Fileexanpl es/ si npl e/ i graph_maxi mal _cliques.Cccooveiviiiiiiiiciiinnnnnnn, 399
16.4. Fileexanpl es/ si npl e/ i graph_i ndependent _sets.Ccccoceeevvviiiieiinnennnnn. 405
17.1. Fileexanpl es/ si mpl e/ i graph_i sonmorphic_vf2.¢C ..coooviviiiiiiiiniinn, 415
17.2. Fileexanpl es/ si npl e/ i graph_subi sonorphic_lad.cccooeeviiinnnnnnnnn. 425
18.1. Fileexanpl es/ si npl e/ i graph_col oring. C ...coooevieiiiiiiiiiiiin e 429
19.1. Fileexanpl es/ si npl e/ i graph_notifs_ randesu.cccooeeviieiiniiiinnennnnn, 434
19.2. Fileexanpl es/ sinpl e/ i graph_notifs randesu.cccooeeviiiiiniiinnennnnn. 436
20.1. Fileexanpl es/ si npl e/ i graph_l ayout _reingold tilford.c 451
21.1. Fileexanpl es/ si npl e/ i graph_read _graph_Igl.c ..ccccooviiiiiiiiiiiiiiinnnns 461
21.2. Fileexanpl es/sinpl e/igraph_wite graph Igl.c ...ccoooriiiiiiiiiiiininn, 462
21.3. Fileexanpl es/ si npl e/ i graph_read_graph_graphdb.cccc.oceeeiinniils 464

XXiii

igraph Reference Manual

21.4. Fileexanpl es/ sinpl e/ graphm . C ..o, 465
21.5. Fileexanpl es/ sinpl e/ graphm . C ..o, 466
21.6. Fileexanpl es/simpl e/ gml . C .o 467
21.7. Fileexanpl es/simpl €/ gml . C oo 468
21.8. Fileexanpl es/ si npl €/ fOrei gn. C ..ccocovviiiiiiiii e 469
21.9. Fileexanpl es/ sinpl e/i graph_wite graph pajek.ccccooriiiiiiiinnin, 470
21.10. Fileexanpl es/ si npl e/ i graph_read_graph dl.cccoooiiiiiiiiiiinnnnn, 470
21.11. Fileexanpl €S/ si mpl €/ dOt . C coveviiiiii i 471
22.1. Fileexanpl es/ si mpl €/ f1 OW. C covveviiiiiii e 473
22.2. Fileexanpl es/ si Mpl €/ f1 OW2. € .ovvvniiii i 473
22.3. Fileexanpl es/ sinpl e/ dom nat or _tree. C ...ccocceeviiiiiiiii i, 475
22.4. Fileexanpl es/sinple/igraph_all st mncuts.Cccoovrriiiiiiiiiiiineiinnnnns 479
22.5. Fileexanpl es/ sinple/igraph_ mnNcut.Cccoccooiiiiiiiiiiiiin e, 480
22.6. Fileexanpl es/ si npl e/ cohesi ve_bl 0CKS. C ..cooeviiiiiiiiiiii e, 487
23.1. Fileexanpl es/ si npl e/igraph_is_separator.Cccooeveriieeiiiierinnennnnnnnn. 488
23.2. Fileexanpl es/sinple/igraph_is mninmal _separator.ccceeeeeen.. 489
23.3. Fileexanpl es/ si npl e/ i graph_m ni mal _separators.cccoeeevvieeennnnns 489
23.4. Fileexanpl es/ si npl e/ i graph_m ni num si ze_separators.c 490
235. Fileexanpl es/sinpl e/ even_tarjan. C ...coooccoiiiiiiiiiiciii e 491
24.1. Fileexanpl es/ si npl e/ i graph_conmunity _optimal _nodularity.c 495
24.2. Fileexanpl es/ si npl e/ i graph_conmmuni ty_| eadi ng_ei genvector.c 501
24.3. Fileexanpl es/ si npl e/ wal Kt rap. € ..ccooevviiiiiiii e, 506
24.4. Fileexanpl es/ si npl e/ i graph_communi ty_edge bet weenness. c 507
245. Fileexanpl es/ si npl e/ i graph_comunity fastgreedy.cCcccooevvnnnnnnnn. 510
24.6. Fileexanpl es/ si npl e/ i graph_community multilevel.cccoooiinniannin. 511
24.7. Fileexanpl es/ si npl e/ i graph_community leiden.ccccooeiiiiiiiinnnnnns 512
24.8. Fileexanpl es/ si npl e/ i graph_community fluid communities.c 513
24.9. Fileexanpl es/ si npl e/ i graph_communi ty | abel propagation.c 514
27.1. Fileexanpl €S/ Si MPl €/ SCQ. C covrrieiiiiiiie e 529
27.2. Fileexanpl es/ si npl e/ i graph_Scg _groupi NQ. Cccooevvviveiiiiiiiiieriineenieean, 535
27.3. Fileexanpl es/ si npl e/ i graph_sScg_groupi Ng2. C ...ccoeevvveviineiiineeiiieeineens 535
27.4. Fileexanpl es/ si npl e/ i graph_scg _groupi Ng3.C ..cccoeevviieiinneiiinieiiiieeineens 535
27.5. Fileexanpl es/ si npl e/ i graph_scg_groupi Ng4. C ...ccoeevvivevineiiineeiiiieeieens 535
27.6. Fileexanpl es/ si npl e/ i graph_scg_sem proj ectors. Cccoeceeveeneennnnnns 536
27.7. Fileexanpl es/ si npl e/ i graph_scg_sem proj ectors2.ccceeeevvvnennnnn. 536
27.8. Fileexanpl es/ si npl e/ i graph_scg_sem projectors3.cCcceevevennennnnn. 536
29.1. Fileexanpl es/ si npl e/ i graph_disjoint_union.ccccooeeeiiiiiiiiiiiineinnnenns 542
29.2. Fileexanpl es/ sinpl e/igraph_uni ON. Cccooooviiiiiiiiiii e, 544
29.3. Fileexanpl es/ sinpl e/igraph_uni ON. Cccooooiiiiiiiiiiii e, 544
29.4. Fileexanpl es/ si npl e/igraph_intersecti on. Ccccovveiieiiiiieiiinecinnennn, 545
29.5. Fileexanpl es/ sinpl e/igraph_difference.ccocoovriiiiiiiiiinii e, 546
29.6. Fileexanpl es/ si npl e/ i graph_conpl ementer. cccooecevveiiiiiiiiieiineeieee, 547
29.7. Fileexanpl es/ si npl e/ i graph_CONPOSE. C ..ccvvviviiiiiiiiciii e, 548
29.8. Fileexanpl es/sinple/igraph_sinplify.C .o, 551
30.1. Fileexanpl es/ si mpl €/ bl @S. C c.veviniiiii i 552
30.2. Fileexanpl es/ si mpl €/ bl @S. C c.oeveriiiii i 553
30.3. Fileexanpl es/ si npl e/ i graph_| apack _dgesv.Cccoovviiiiiiiiiiiiineninnennn, 555
30.4. Fileexanpl es/ si npl e/ i graph_| apack_dSyevr.cCcccooviviiiiiiiiiiiiiieinnnenn, 557
30.5. Fileexanpl es/ si npl e/ i graph_| apack_dgeev.cc..ccoovviiiiiiiiiciiineninenn, 558
30.6. Fileexanpl es/ si npl e/ i graph_| apack_dgeevXx. Cccoeveviiiiiiniiiiiieinnnenn, 560
31.1. Fileexanpl es/ si npl e/ i graph_bi partite create.ccccoeeiviiiiinennnnnns 569
31.2. Fileexanpl es/ si npl e/ i graph_bi partite_projection.cccoeeeeunnennn.n. 574
31.3. Fileexanpl es/ si npl e/ i graph_bi partite_projection.cccoeeveunrnnnnn. 575
33.1. Fileexanpl es/ sinpl e/ i graph_Versi on. C ...ccccccooveiiiiiiiiiiiii e, 584
33.2. Fileexanpl es/ si npl e/ i graph_random sanpl €. Cccooveviieiiiiiiiiiieiinnenn, 586
33.3. Fileexanpl es/ si npl e/ i graph_convex_hull.cCcccooiiiiiiniiiiiie, 588
33.4. Fileexanpl es/ si npl e/ i graph_power _law fit.cC ...cooccoiiviiiiniiiiiiiiicinnnnn, 590

XXiV

Chapter 1. Introduction

igraph isalibrary for creating and manipulating graphs. Y ou can look at it in two ways: first, igraph
contains the implementation of quite alot of graph algorithms. These include classic graph agorithms
like graph isomorphism, graph girth and connectivity and aso the new wave graph agorithms like
transitivity, graph motifs and community structure detection. Skim through the table of contents or
theindex of this book to get an impression of what is available.

Second, igraph provides a platform for developing and/or implementing graph algorithms. It has an
efficient data structure for representing graphs, and a number of other data structures like flexible
vectors, stacks, heaps, queues, adjacency lists that are useful for implementing graph algorithms. In
fact these data structures evolved along with the implementation of the classic and non-classic graph
algorithms which make up the major part of the igraph library. This way, they were fine-tuned and
checked for correctness several times.

Our main goal with developing igraph wasto create agraph library which is efficient on large, but not
extremely large graphs. More precisely, it is assumed that the graph(s) fit into the physical memory of
the computer. Nowadays this means graphs with several million vertices and/or edges. Our definition
of efficient isthat it runs fast, both in theory and (more importantly) in practice.

We believe that one of the big strengths of igraph is that it can be embedded into a higher-level lan-
guage or environment. Three such embeddings (or interfaces if you look at them another way) are
currently being developed by us: an R package, a Python extension module, and a Mathematica (Wol-
fram Language) package. Others are likely to come. High level languages such as R or Python make
it possible to use graph routines with much greater comfort, without actually writing asingleline of C
code. They have some, usually very small, speed penalty compared to the C version, but add ease of
use and much flexibility. This manual, however, covers only the C library. If you want to use Python,
R or the Wolfram Language, please see the documentation written specifically for these interfaces and
come back here only if you are interested in some detail which is not covered in those documents.

We still consider igraph as a child project. It has much room for development and we are sure that it
will improve alot in the near future. Any feedback we can get from the usersis very important for us,
as most of the time these questions and comments guide us in what to add and what to improve.

igraph is open source and distributed under the terms of the GNU GPL. We strongly believe that all
the algorithms used in science, let that be graph theory or not, should have an efficient open-source
implementation allowing use and modification for anyone.

igraph is free software

igraph library

Copyright (C) 2003-2012 Géabor Csardi <csardi.gabor@gmail.com> 334 Harvard st, Cambridge MA,
02139, USA

This program is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU Genera Public License for more details.

Y ou should have received a copy of the GNU General Public License along with this program; if not,
write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
USA

Introduction

Citing igraph
To citeigraph in publications, please use the following reference:

Gabor Csardi, Tamas Nepusz: The igraph software package for complex network research. I nterJour-
nal Complex Systems, 1695, 2006.

The igraph C library is assigned the DOI 10.5281/zenodo.3630268 [https://doi.org/10.5281/zeno-
do.3630268] on Zenodo.

https://doi.org/10.5281/zenodo.3630268
https://doi.org/10.5281/zenodo.3630268
https://doi.org/10.5281/zenodo.3630268

Chapter 2. Installation

Prerequisites

To build igraph from sources, you will need at |east:

CMake [https://cmake.org] 3.16 or later

C and C++ compilers

Visua Studio 2015 and later are supported. Earlier Visua Studio versions may or may not work.

Certain features also require the following libraries:

libxml 2 [http://ww.xmlsoft.org/], required for GraphML support

igraph bundlesanumber of librariesfor convenience. However, it is preferableto use external versions
of these libraries, which may improve performance. These are;

GMP [https://gmplib.org/] (the bundled alternative is Mini-GMP)

GLPK [https.//www.gnu.org/software/glpk/]

ARPACK [https:.//www.caam.rice.edu/software/ ARPACK/]

CXSparse from SuiteSparse [https://people.engr.tamu.edu/davis/suitesparse.htmi]

A library providing a BLAS [https://www.netlib.org/blas/] API (available by default on macOS;
OpenBLAS [https://openblas.net] is one option on other systems)

A library providing a LAPACK [https://www.netlib.org/lapack/] API (available by default on ma-
cOS; OpenBLAS [https://openblas.net] is one option on other systems)

When building the development version of igraph, bi son,f | ex andgi t arealso required. Released
versions do not require these tools.

Torunthetests, di f f isalso required.

Installation

General build instructions

igraph uses a CMake-based build system [https://cmake.org/cmake/hel p/latest/guide/user-interac-
tion/index.html]. To compileit,

Enter the directory where the igraph sources are:

$ cd igraph

Create anew directory. Thisiswhereigraph will be built:
$ nkdir build

$ cd build

Run CMake, which will automatically configure igraph, and report the configuration:

https://cmake.org
https://cmake.org
http://www.xmlsoft.org/
http://www.xmlsoft.org/
https://gmplib.org/
https://gmplib.org/
https://www.gnu.org/software/glpk/
https://www.gnu.org/software/glpk/
https://www.caam.rice.edu/software/ARPACK/
https://www.caam.rice.edu/software/ARPACK/
https://people.engr.tamu.edu/davis/suitesparse.html
https://people.engr.tamu.edu/davis/suitesparse.html
https://www.netlib.org/blas/
https://www.netlib.org/blas/
https://openblas.net
https://openblas.net
https://www.netlib.org/lapack/
https://www.netlib.org/lapack/
https://openblas.net
https://openblas.net
https://cmake.org/cmake/help/latest/guide/user-interaction/index.html
https://cmake.org/cmake/help/latest/guide/user-interaction/index.html
https://cmake.org/cmake/help/latest/guide/user-interaction/index.html

Installation

$ cmake ..
To set anon-default installation location, such as/ opt / | ocal , use:

cmake .. -DCMAKE | NSTALL_PREFI X=/opt/| ocal

Check the output carefully, and ensure that all features you need are enabled. If CMake could not
find certain libraries, some features such as GraphML support may have been automatically dis-
abled.

e There are several ways to adjust the configuration:
* Runccmake . on Unix-like systems or cmake- gui on Windows for a convenient interface.
« Simply edit the CMakeCache. t xt file. Some of the relevant options are listed below.

» Oncethe configuration has been adjusted, run crrake .. again.

Once igraph has been successfully configured, it can be built, tested and installed using:

$ cmake --build .
$ cmake --build . --target check
$ crmake --install

Specific instructions for Windows

Microsoft Visual Studio

vcpkg

With Visual Studio, the steps to build igraph are generally the same as above. However, since the
Visual Studio CMake generator is a multi-configuration one, we must specify the configuration (typ-
ically Release or Debug) with each build command using the - - conf i g option:

nkdir build

cd build

crmake ..

cmake --build . --config Rel ease

cmake --build . --target check --config Rel ease

When building the development version, bi son and f | ex must be available on the system. wi n-
f | exbi son [https://github.com/lexxmark/winflexbison] for Bison version 3.x can be useful for this
purpose—make sure that the executables are in the system PATH. The easiest installation option
is probably by installing wi nf | exbi son3 from the Chocolatey package manager [https://choco-
latey.org/packages/winflexbison3].

Most external dependencies can be conveniently installed using vcpkg [https:/github.com/mi-
crosoft/vepkg#quick-start-windows]. Notethat i gr aph bundles all dependencies except | i bxm 2,
which is needed for GraphML support.

In order to use vcpkg integrate it in the build environment by executing vepkg. exe i ntegrate
i nstal | onthe command line. When configuring igraph, point CMake to the correct vcpkg. c-
nmake fileusing - DCVAKE_TOOLCHAI N_FI LE=. . ., asinstructed.

Additionally, it might be that you need to set the appropriate so-called triplet using - DVCPKG_TAR-
GET_TRI PLET whenrunning crmake, for exampling, settingittox64- wi ndows when using shared

https://github.com/lexxmark/winflexbison
https://github.com/lexxmark/winflexbison
https://github.com/lexxmark/winflexbison
https://chocolatey.org/packages/winflexbison3
https://chocolatey.org/packages/winflexbison3
https://chocolatey.org/packages/winflexbison3
https://github.com/microsoft/vcpkg#quick-start-windows
https://github.com/microsoft/vcpkg#quick-start-windows
https://github.com/microsoft/vcpkg#quick-start-windows

Installation

builds of packages or x64- wi ndows- st at i ¢ when using static builds. Similarly, you also need
to specify this target triplet when installing packages. For example, to install | i bxm 2 as a shared

library,usevcpkg. exe instal |l |ibxm 2: x64-w ndows andtoinstal | i bxm 2 asastatic
library, use vepkg. exe install |ibxm 2: x64-w ndows- st ati c. In addition, there is
the possibility to use a static library with dynamic runtime linking using the x64- wi ndows- st a-
tic-nd triplet.

There are some known issues with igraph when using certain external packages from vcpkg. When
building against OpenBLAS, this results in a few differences in some unit tests, see issue #1491
[https://github.com/igraph/igraph/issues/1491].

MSYS2

MSY S2 can be installed from www.msys2.org. After installing MSY S2, ensurethat it isup to date by
opening aterminal and running pacman - Syuu.

The instructions below assume that you want to compile for a 64-bit target.
Install the following packages using pacman - S.
* Minimal requirements: mi ngw w64- x86_64-t ool chai n, m ngw w64- x86_64- crake.

» Optiona dependencies that enable certain features: m ngw w64- x86_64- gnp, m ngw we4-
x86_64-1ibxm 2

» Optiona external libraries for better performance: m ngw w64- x86_64- openbl as, m ngw
W64- x86_64- sui t esparse, m ngw wb4-x86_64- ar pack, m ngw w64-x86_ 64-
gl pk

* Only needed for running thetests: di ffuti |l s
* Required only when building the development version: gi t , bi son, f | ex

The following command will install of these at once:

pacman -S \
m ngw we4- x86_64-t ool chai n m ngw wb4- x86_64- cnmake \
m ngw we4- x86_64- gnp m ngw we4- x86_64-1i bxm 2 \
m ngw we4- x86_64- openbl as nmi ngw we4- x86_64- sui t espar se m ngw we4- x86_64- ar pacl
diffutils \
git bison flex

In order to build igraph, follow the General build instructions above, paying attention to the follow-
ing:

* Whenusing MSY S2, start the“M SY S2 MinGW 64-bit” terminal, and not the“MSY S2MSY S’ one.

* Besuretoinstall them ngw w64- x86_64- crmake package and not the cnake one. The latter
will not work.

* When running cnmake, passthe option - G' MSYS Makefil es™.

» Notethat ccnake isnot currently available. cmake- gui can be used only if the mi ngw w64-
x86_64- gt 5 packageisinstalled.

Notable configuration options

The following options may be set to ON or OFF. Some of them have an AUT O setting, which chooses
areasonable default based on what libraries are available on the current system.

https://github.com/igraph/igraph/issues/1491
https://github.com/igraph/igraph/issues/1491

Installation

« igraph bundles some of its dependencies for convenience. The | GRAPH_USE | NTERNAL XXX
flags control whether these should be used instead of external versions. Set them to ON to use the
bundled (“vendored”) versions. Generally, external versions are preferable as they may be newer
and usually provide better performance.

e | GRAPH_GLPK_SUPPORT: whether to make use of the GLPK [https.//www.gnu.org/soft-
ware/glpk/] library. Some features, such as finding a minimum feedback arc set or finding commu-
nities through exact modularity optimization, require this.

* | GRAPH_GRAPHWL_SUPPORT: whether to enable support for reading and writing GraphML
[http://graphml.graphdrawing.org/] files. Requires the libxml 2 [http://xmlsoft.org/] library.

* | GRAPH_OPENMP_SUPPORT: whether to use OpenMP parallelization to accelerate certain func-
tions such as PageRank calculation. Compiler support is required.

* | GRAPH_ENABLE_LTO whether to build igraph with link-time optimization, which improves
performance. Not supported with all compilers.

* | GRAPH_ENABLE_TLS: whether to enablethread-local storage. Required when usingigraph from
multiple threads.

* BU LD _SHARED LI BS [https://cmake.org/cmake/hel p/l atest/vari-
able/BUILD_SHARED_LIBS.html]: whether to build a shared library instead of a static one.

* BLA VENDOR: controls which library to use for BLAS [https://cmake.org/cmake/help/lat-
est/module/FindBLAS.html] and LAPACK [https://cmake.org/cmake/hel p/latest/modul e/FindL A-
PACK.html] functionality.

 CMAKE_ | NSTALL_PREFI X [https://cmake.org/cmake/help/latest/variable/ CMAKE _INSTAL-
L_PREFIX.html]: the location where igraph will be installed.

Building the documentation

Most users will not need to build the documentation, as the release tarball contains pre-built HTML
documentation in the doc directory.

To build the documentation for the development version, simply build the ht m or pdf targets for
the HTML and PDF versions of the documentation, respectively.

$ cmake --build . --target htn

Building the HTML documentation requires Python 3, xmi t 0 and sour ce- hi ghl i ght . Building
the PDF documentation also requiresxsl t proc,xm |i nt andf op.

Notes for package maintainers

This section is for people who package igraph for Linux distros or other package managers. Please
read it carefully before packaging igraph.

Auto-detection of dependencies

igraph bundles several of its dependencies (or simplified versions of its dependencies). During config-
uration time, it checks whether each dependency is present on the system. If yes, it usesit. Otherwise,
it falls back to the bundled (“vendored”) version. In order to make configuration as deterministic as
possible, you may want to disable this auto-detection. To do so, set each of the | GRAPH_USE | N-
TERNAL XXX option described above. Additionally, set BLA VENDOCR to use the BLAS and LA-
PACK implementations of your choice. This should be the same BLAS and LAPACK library that
igraph's other dependencies, such as ARPACK and CX Sparse are linked against.

https://www.gnu.org/software/glpk/
https://www.gnu.org/software/glpk/
https://www.gnu.org/software/glpk/
http://graphml.graphdrawing.org/
http://graphml.graphdrawing.org/
http://xmlsoft.org/
http://xmlsoft.org/
https://cmake.org/cmake/help/latest/variable/BUILD_SHARED_LIBS.html
https://cmake.org/cmake/help/latest/variable/BUILD_SHARED_LIBS.html
https://cmake.org/cmake/help/latest/variable/BUILD_SHARED_LIBS.html
https://cmake.org/cmake/help/latest/module/FindBLAS.html
https://cmake.org/cmake/help/latest/module/FindBLAS.html
https://cmake.org/cmake/help/latest/module/FindBLAS.html
https://cmake.org/cmake/help/latest/module/FindLAPACK.html
https://cmake.org/cmake/help/latest/module/FindLAPACK.html
https://cmake.org/cmake/help/latest/module/FindLAPACK.html
https://cmake.org/cmake/help/latest/variable/CMAKE_INSTALL_PREFIX.html
https://cmake.org/cmake/help/latest/variable/CMAKE_INSTALL_PREFIX.html
https://cmake.org/cmake/help/latest/variable/CMAKE_INSTALL_PREFIX.html

Installation

For example, to force igraph to use external versions of all dependencies, and to use OpenBLAS for
BLAS/LAPACK, use

$ cmake .. \
- DI GRAPH_USE_| NTERNAL_BLAS=CFF \
- DI GRAPH_USE_| NTERNAL_LAPACK=CFF \
- DI GRAPH_USE_| NTERNAL_ ARPACK=CFF \
- DI GRAPH_USE_| NTERNAL_ GLPK=COFF \
- DI GRAPH_USE_| NTERNAL_ CXSPARSE=CFF \
- DI GRAPH_USE_| NTERNAL_GVP=CFF \
- DBLA_VENDOR=(penBLAS \
- DI GRAPH_GRAPHML_ SUPPORT=ON

Shared and static builds

On Windows, shared and static builds should not be installed in the same location. If you decide to
do so anyway, keep in mind the following: Both builds containani gr aph. | i b file. The static one
should be renamed to avoid conflict. The headersfrom the static build areincompatible with the shared
library. The headers from the shared build may be used with the static library, but | GRAPH_STATI C
must be defined when compiling programs that will link to igraph statically.

These issues do not affect Unix-like systems.
Cross-compiling

When building igraph with an internal ARPACK, LAPACK or BLAS, it makes use of f2c, which
compiles and runs the ar i t hchk program at build time to detect the floating point characteristics
of the current system. It writes the resultsinto the ar i t h. h header. Since running this program is
not possible when cross-compiling, igraph's build system allows specifying apre-generated version of
this header file through the F2C_EXTERNAL _ARI TH_HEADER CMake option. An example version
of this header follows for the x86_64 and arm64 target architecures on macOS. Warning: Do not use
thisversion of ar i t h. h on other systems or architectures.

#define | EEE_8087

#define Arith_Kind_ASL 1
#define Long int

#define Intcast (int)(long)
#defi ne Doubl e_Align
#define X64_bit_pointers
#defi ne NANCHECK

#defi ne QNaNO 0xO

#define QNaNl Ox7ff 80000

Additional notes

» Asof igraph 0.9, there is no tangible benefit to using an external GMP, as igraph does not yet use
GMP in any performance-critical way. The bundled Mini-GMP is sufficient.

* Link-time optimization noticeably improves the performance of some igraph functions. To enable
it, use - DI GRAPH_ENABLE_LTO=0ON. The AUTOsetting is also supported, and will enable link-
time optimization only if the current compiler supportsit. Note that thisis detected by CMake, and
the detection is not always accurate.

» We saw occasiona hangs on Windows when igraph was built for a 32-bit target with MinGW and
linked to OpenBLAS. We believe thisto be an issue with OpenBLAS, not igraph. On this platform,
you may want to opt for adifferent BLAS/LAPACK or the bundled BLAS/LAPACK.

Chapter 3. Tutorial

Compiling programs using igraph
The following short example program demonstrates the basic usage of the igraph library.

#i ncl ude <i graph. h>

int main() {
i graph_real t dianeter;
i graph_t graph;

i graph_rng_seed(i graph_rng_default(), 42);

i graph_erdos_renyi _ganme(&graph, | GRAPH ERDOS_RENYI _GNM 1000, 3000,
| GRAPH_UNDI RECTED, | GRAPH_NO_LOCPS) ;

i graph_di anet er (&graph, &dianeter, 0, 0, 0, |GRAPH UNDI RECTED, 1);

printf("D ameter of a random graph with average degree %g: %g\n",
2.0 * igraph_ecount (&graph) / igraph_vcount (&graph),
(doubl e) dianeter);

i graph_dest roy(&gr aph);

return O;

}

Thisexampleillustrates a couple of points. First, programsusing theigraph library should includethe
i gr aph. h header file. Second, igraph usestheigraph_rea_t type for real numbers instead of dou-
ble. Third, igraph graph objects are represented by theigraph_t datatype. Fourth, thei gr aph_er -
dos_renyi _gamne() createsagraph andi gr aph_destroy() destroysit, i.e. deallocates the
memory associated to it.

For compiling this program you need a C compiler. Optionally, CMake [https://cmake.org] can be
used to automate the compilation.

Compiling with CMake

It is convenient to use CMake because it can automatically discover the necessary compilation flags
on all operating systems. Many IDEs support CMake, and can work with CMake projects directly.
To create a CMake project for this example program, create a file name CMakelLi st s. t xt with
the following contents:

cmake_m ni mum requi red(VERSI ON 3. 16)
proj ect (i graph_test C
fi nd_package(i graph REQUI RED)

add_execut abl e(i graph_test igraph_test.c)
target _link_libraries(igraph_test PUBLIC igraph::igraph)

To compile the project, create a new directory called build, and switch to it:

nkdir build
cd build

https://cmake.org
https://cmake.org

Tutorial

Run CMake to configure the project:

cmake ..

If igraph was installed at a non-standard location, specify its prefix using the - DCMAKE _PRE-
FI X_PATH=. .. option. The prefix must be the same directory that was specified as the
CMAKE_I NSTALL_PREFI X when compiling igraph.

If configuration has succeeded, build the program using

cmake --build .

Compiling without CMake

On most Unix-like systems, the default C compiler is called cc. To compile the test program, you will
need a command similar to the following:

cc igraph_test.c -1/usr/local/include/igraph -L/usr/local/lib -ligraph -o igrap!
The exact form depends on where igraph was installed on your system, whether it was compiled as
ashared or static library, and the external libraries it was linked to. The directory after the- 1 switch
isthe one containing thei gr aph. h file, while the one following - L should contain the library file
itself, usually afile called | i bi gr aph. a (static library on macOS and Linux), | i bi gr aph. so
(shared library on Linux), | i bi graph. dyl i b (shared library on macOS), i gr aph. | i b (static
library on Windows) or i gr aph. dl | (shared library on Windows). If igraph was compiled as a
static library, it is also necessary to manually link to all of its dependencies.

If your system hasthe pkg-config utility you are likely to get the necessary compile options by issuing
the command

pkg-config --libs --cflags igraph

(if igraph was built as a shared library) or

pkg-config --static --libs --cflags igraph
(if igraph was built as a static library).
Running the program

On most systems, the executable can be run by simply typing its name like this:

./igraph_test
If you use dynamic linking and the igraph library is not in a standard place, you may need to add

itslocationtothe LD_LI BRARY_PATH (Linux), DYLD_LI BRARY_PATH (macOS) or PATH (Win-
dows) environment variables.

Creating your first graphs

Thefunctions generating graph objects are called graph generators. Stochastic (i.e. randomized) graph
generators are called “games’.

Tutorial

igraph can handle directed and undirected graphs. Most graph generators are able to create both types
of graphs and most other functions are usually also capable of handling both. E.g.i gr aph_short -
est _pat hs() which (surprisingly) calculates shortest paths from avertex to other vertices can cal-
culate directed or undirected paths.

igraph has sophisticated ways for creating graphs. The simplest graphs are deterministic reg-
ular structures like star graphs (i graph_star ()), ring graphs (i graph_ring()), lattices
(igraph_lattice())ortrees(i graph_tree()).

The following example creates an undirected regular circular lattice, adds some random edges to it
and calcul ates the average length of shortest paths between all pairs of verticesin the graph before and
after adding the random edges. (The message isthat some random edges can reduce path lengthsalot.)

#i ncl ude <i graph. h>

int main() {
i graph_t graph;
i graph_vector_t dinmvector;
i graph_vector_t edges;
i graph_real _t avg_path_Ilen;
int i;

i graph_vector_init(&di mvector, 2);

VECTOR(di mvect or) [0] =30;

VECTOR(di mvector) [1] =30;

i graph_l attice(&graph, &dinmvector, 0, | GRAPH UNDI RECTED, 0, 1);

i graph_aver age_pat h_| engt h(&graph, &avg path_len, NULL, | GRAPH UNDI RECTED, 1)
printf("Average path length (lattice): %9\ n", (double) avg path_| el

i graph_rng_seed(i graph_rng _default(), 42);

i graph_vector_init(&edges, 20);

for (i=0; i < igraph_vector_size(&edges); i++) {
VECTOR(edges)[i] = RNG_INTEGER(O, igraph_vcount (&graph) - 1);

}

i graph_add_edges(&gr aph, &edges, 0);
i graph_aver age_pat h_| engt h(&graph, &avg path_len, NULL, | GRAPH UNDI RECTED, 1)
printf("Average path length (random zed lattice): %\n", (double) avg_path_Ile

i graph_vector_destroy(&di mvector);
i graph_vector_destroy(&edges);
i graph_destroy(&graph);

return O;

}

This example illustrates some new points. igraph uses igraph_vector t instead of plain C arrays.
igraph_vector_t is superior to regular arrays in amost every sense. Vectors are created by the
i graph_vector _init() function and, like graphs, they should be destroyed if not needed any
more by calling i gr aph_vect or _destroy() onthem. A vector can be indexed by the VEC-
TOR() function (right now itisamacro). Vectors can beresized, e.g. most igraph functionsreturning
theresult in avector resize it to the size of the result.

i graph_l atti ce() takesavector argument specifying the dimensions of the lattice. In this ex-
amplewe generate a 30x30 two dimensional lattice. Seethedocumentationof i gr aph_l atti ce()
in the reference manual for the other arguments.

The vertices in a graph are identified by an integer number between 0 and N-1, N is the number of
vertices in the graph (this can be obtained by i gr aph_vcount (), asin the example).

10

Tutorial

Thei graph_add_edges() function simply takes a graph and a vector of vertex ids defining the
new edges. Thefirst edge is between the first two vertex ids in the vector, the second edge is between
the second two, etc. This way we add ten random edges to the lattice.

Notethat in the exampleit is possible to add |oop edges, edges pointing to the same vertex and multiple
edges, more than one edge between the same pair of vertices. igraph_t can of course represent loops
and multiple edges, although someroutines expect simplegraphs, i.e. graphswithout loop and multiple
edges, because for example some structural properties are ill-defined for non-simple graphs. Loop
edges can be removed by callingi gr aph_si npl i fy().

Calculating various properties of graphs

In our next examplewewill calculate various centrality measuresin afriendship graph. The friendship
graph is from the famous Zachary karate club study. (Web search on 'Zachary karate' if you want to
know more about this.) Centrality measures quantify how central isthe position of individua vertices
in the graph.

#i ncl ude <i graph. h>

int main() {
i graph_t graph;
i graph_vector _t v;
i graph_vector _t result;
igraph real t edges[] ={ O 0 o, 3, 0,0 4, 0, 5, 0, 6, 0, 7, 0, 8,
o, 10, 0,11, 0,12, 0,13, 0,17, 0,19, 0,21, 0,31
1 1 1, 7, 1,13, 1,17, 1,19, 1,21, 1,30,
2 2 2,27, 2,28, 2,32, 2, 9, 2, 8, 2,13,
3, 7, 3,12, 3,13, 4, 6, 4,10, 5, 6, 5,10, 5,16,
6,16, 8,30, 8,32, 8,33, 9, 33,13, 33, 14, 32, 14, 33,
15, 32, 15, 33, 18, 32, 18, 33, 19, 33, 20, 32, 20, 33,
22, 32,22, 33, 23, 25, 23, 27, 23, 32, 23, 33, 23, 29,
24, 25, 24, 27, 24, 31, 25, 31, 26, 29, 26, 33, 27, 33,
28, 31, 28, 33, 29, 32, 29, 33, 30, 32, 30, 33, 31, 32, 31, 33,
32,33

b

i graph_vector _view(&, edges, sizeof(edges) / sizeof(double));
i graph_creat e(&graph, &, 0, | GRAPH UNDI RECTED);

i graph_vector _init(&esult, 0);

i gr aph_degree(&graph, &esult, igraph_vss_all(), |GRAPH ALL, | GRAPH LOOPS);
printf("Maxi mum degree is %0i, vertex %i.\n",
(int) igraph_vector max(&esult), (int) igraph_vector_ which_nax(& esul!

i graph_cl oseness(&graph, & esult, NULL, NULL, igraph_vss all (), |GRAPH ALL,
/*wei ghts=*/ NULL, /*normalized=*/ 0);
printf("Maximum cl oseness is %0g, vertex %i.\n",
(doubl e) igraph_vector_nax(&esult), (int) igraph_vector_which_max(&r

i gr aph_bet weenness(&graph, & esult, igraph_vss all (),
| GRAPH_UNDI RECTED, /*wei ghts=*/ NULL);
printf("Maxi mum bet weenness is %0g, vertex %i.\n",
(doubl e) igraph_vector_nax(&esult), (int) igraph_vector_which_max(&r

i graph_vector _destroy(& esult);
i graph_destroy(&graph);

11

Tutorial

return O;

}

This example reflects some new features. First of all, it shows a way to define a graph simply as
defining a C array with its edges. Functioni gr aph_vect or _vi ew() createsaview of aC array.
It does not copy any data, this aso means that you should not call i gr aph_vect or _destroy()

on avector created thisway. This vector is then used to create the undirected graph.

Then the degree, closeness and betweenness centrality of the vertices is calculated and the highest
values are printed. Note that the vector (r esul t) which returns the result from these functions has
to beinitialized first, and also that the functions resize it to be able to hold the resuilt.

Thei graph_vss_al | () argument tells the functions to calculate the property for every vertex in
the graph, it is shorthand for a vertex selector (igraph_vs t). Vertex selectors help to perform opera-
tions on a subset of vertices, you can read more about them in one of the following chapters.

12

Chapter 4. About igraph graphs, the
basic interface

The igraph data model

The igraph library can handle directed and undirected graphs. The igraph graphs are multisets of or-
dered (if directed) or unordered (if undirected) labeled pairs. The labels of the pairs plus the number
of vertices always starts with zero and ends with the number of edges minus one. In addition to that a
table of metadatais also attached to every graph, its most important entries are the number of vertices
in the graph and whether the graph is directed or undirected.

Liketheedges, theigraph verticesare also labeled by numbers between zero and the number of vertices
minus one. So, to summarize, adirected graph can be imagined like this:

(vertices: 6,
directed: yes,
{
(0,2),
(2,2),
(2,3),
(3,3),
(3,4),
(3,4),
(4,1)
}
)

Herethe edgesare ordered pairsor vertex ids, and the graph isamultiset of edges plus some meta-data.

An undirected graph islike this:

(vertices: 6,
di rected: no,
{

{0, 2},
{2},
{2,3},
{3},
{3, 4},
{3, 4},
{4, 1}
}

)

Here an edgeisaset of one or two vertex ids, two for most of the time, except for loop edges. A graph
isamultiset of edges plus metadata, just like in the directed case.

It is possible to convert a directed graph to an undirected one, seethe i graph_t o_di rect ed()
and i graph_t o_undirected() functions.

Note that igraph has some limited support for graphs with multiple edges. The support meansthat mul-
tiple edges can be stored in igraph graphs, but for most functions (like i gr aph_bet weenness())
it isnot checked that they work well on graphs with multiple edges. To eliminate multiple edges from
agraph,youcanuse i graph_sinplify().

13

About igraph graphs,
the basic interface

The basic interface

Thisisthe very minimal APl inigraph. All the other functions use this minimal set for creating and
manipulating graphs.

Thisisavery important principle since it makes possible to implement other data representations by
implementing only this minimal set.

Graph constructors and destructors

I graph_enpty — Creates an empty graph with some vertices
and no edges.

int igraph_enpty(igraph_t *graph, igraph_integer t n, igraph_bool t directed);

The most basic constructor, al the other constructors should call thisto create aminimal graph object.
Our use of the term "empty graph" in the above description should be distinguished from the mathe-
matical definition of the empty or null graph. Strictly speaking, the empty or null graph in graph theory
is the graph with no vertices and no edges. However by "empty graph” asusedini gr aph we mean
agraph having zero or more vertices, but no edges.

Arguments:
graph: Pointer to a not-yet initialized graph object.
n: The number of verticesin the graph, a non-negative integer number is expected.

di rected: Boolean; whether the graph is directed or not. Supported values are:
| GRAPH_DI RECTED The graph will be directed.

| GRAPH_UNDI RECTED The graph will be undirected.

Returns:
Error code: | GRAPH_EI NVAL: invalid number of vertices.

Time complexity: O(|V]) for agraph with [V| vertices (and no edges).

Example4.1. Fileexanpl es/ si npl e/ i graph_enpty. c

| graph_enpty_attrs — Creates an empty graph with some ver-
tices, no edges and some graph attributes.

int igraph_enpty attrs(igraph_t *graph, igraph_integer_t n, igraph _bool t direc

Use thisinstead of i gr aph_enpt y() if you wish to add some graph attributes right after initial-
ization. This function is currently not very interesting for the ordinary user. Just supply 0 here or use

i graph_enpty().

Arguments:

14

About igraph graphs,
the basic interface

graph: Pointer to a not-yet initialized graph object.
n: The number of vertices in the graph; a non-negative integer number is expected.
di rected: Boolean; whether the graph is directed or not. Supported values are:

| GRAPH_DI RECTED Create adirected graph.

| GRAPH_UNDI RECTED Create an undirected graph.

attr: The attributes.

Returns:
Error code: | GRAPH_EI NVAL : invalid number of vertices.

Time complexity: O(|V]) for agraph with [V| vertices (and no edges).

| gr aph_copy — Creates an exact (deep) copy of a graph.

int igraph_copy(igraph_t *to, const igraph_t *fronj;
This function deeply copies a graph object to create an exact replica of it. The new replica should be
destroyed by calling i gr aph_dest r oy() on it when not needed any more.

You can also create a shallow copy of agraph by ssimply using the standard assignment operator, but
be careful and do not destroy a shallow replica. To avoid this mistake, creating shallow copiesis not
recommended.

Arguments:
t o: Pointer to an uninitialized graph object.

from Pointer to the graph object to copy.

Returns:
Error code.

Time complexity: O(|V|+|E|) for a graph with |V| vertices and |E| edges.

Example 4.2. Fileexanpl es/ si npl e/ i graph_copy. c

| gr aph_destr oy — Frees the memory allocated for a graph ob-
ject.

voi d igraph_destroy(igraph_t *graph);

This function should be called for every graph object exactly once.

Thisfunctioninvalidatesall iterators (of course), but theiterators of agraph should be destroyed before
the graph itself anyway.

15

About igraph graphs,
the basic interface

Arguments:
graph: Pointer to the graph to free.

Time complexity: operating system specific.
Basic query operations

I graph_vcount — The number of vertices in a graph.

i graph_integer _t igraph_vcount(const igraph_t *graph);

Arguments:

graph: Thegraph.

Returns:
Number of vertices.

Time complexity: O(1)

| graph_ecount — The number of edges in a graph.

i graph_i nteger _t igraph_ecount(const igraph_t *graph);

Arguments:

graph: Thegraph.

Returns:
Number of edges.

Time complexity: O(1)

| graph_edge — Gives the head and tail vertices of an edge.

int igraph_edge(const igraph_t *graph, igraph_integer t eid,
igraph_integer t *from igraph_integer_t *to);

Arguments:

graph: Thegraph object.

ei d: The edgeid.

from Pointer toanigraph_integer_t. Thetail (head) of the edge will be placed herefor undirected
(directed) graphs.

16

About igraph graphs,
the basic interface

t o: Pointer toanigraph_integer_t. Thehead (tail) of the edgewill be placed herefor undirected
(directed) graphs.
Returns:

Error code. The current implementation always returns with success.

See also:
i graph_get eid() for the opposite operation; i gr aph_edges() to get the endpoints of
severa edges; | GRAPH TQ(), | GRAPH_FROM) and | GRAPH _OTHER() for afaster but non-
error-checked version.
Added in version 0.2.
Time complexity: O(1).
I gr aph_edges — Gives the head and tail vertices of a series of
edges.

i nt igraph_edges(const igraph_t *graph, igraph_es_t eids,
i graph_vector_t *edges);

Arguments:

graph: The graph object.

ei ds: Edge selector, the series of edges.

edges: Pointer to an initialized vector. The start and endpoints of each edge will be placed here.

Returns:

Error code.

See also:
i graph_get edgel i st () to get the endpoints of all edges; i gr aph_get _ei ds() and
i graph_get eids_multi () for the opposite operation; i gr aph_edge() for getting the
endpoints of a single edge; | GRAPH_TQ(), | GRAPH_FROM') and | GRAPH _OTHER() for a
faster but non-error-checked method.

Time complexity: O(k) wherek is the number of edgesin the selector.

| GRAPH_FROM— The source vertex of an edge.

#def i ne | GRAPH_FROM gr aph, ei d)
Faster thani gr aph_edge() , but no error checking is done: ei d is assumed to be valid.
Arguments:

graph: Thegraph.

17

About igraph graphs,
the basic interface

ei d: TheedgeID.

Returns:

The source vertex of the edge.

See also:

i graph_edge() if error checking is desired.

| GRAPH TO— The target vertex of an edge.

#def i ne | GRAPH TQ(gr aph, ei d)

Faster thani gr aph_edge() , but no error checking is done: ei d is assumed to be valid.
Arguments:

graph: The graph object.

ei d: TheedgeID.

Returns:

The target vertex of the edge.

See also:

i graph_edge() if error checking is desired.

| GRAPH _OTHER — The other endpoint of an edge.

#def i ne | GRAPH _OTHER(gr aph, ei d, vi d)

Typically used with undirected edges when one endpoint of the edge is known, and the other endpoint
is needed. No error checking isdone: ei d and vi d are assumed to be valid.

Arguments:

graph: Thegraph object.

ei d: The edgeID.
vi d: The vertex ID of one endpoint of an edge.
Returns:

The other endpoint of the edge.

See also:

18

About igraph graphs,
the basic interface

| GRAPH TQ() and | GRAPH _FROM) to get the source and target of directed edges.

| graph_get ei d — Get the edge id from the end points of an
edge.

int igraph_get eid(const igraph_t *graph, igraph_integer t *eid,
i graph_integer_t pfrom igraph_integer_t pto,
i graph_bool t directed, igraph_bool t error);

For undirected graphs pf r omand pt o are exchangeable.

Arguments:

graph: The graph object.

ei d: Pointer to an integer, the edge id will be stored here.

pfrom The starting point of the edge.

pt o: The end point of the edge.

di rected: Logical constant, whether to search for directed edgesin adirected graph. Ignored for
undirected graphs.

error: Logical scaar, whether to report an error if the edge was not found. If it isfalse, then

-1 will beassignedto ei d.

Returns:

Error code.

See also:
i graph_edge() for the opposite operation.

Time complexity: O(log (d)), where d is smaller of the out-degree of pf r omand in-degree of pt o if
di rect edistrue. If di r ect ed isfalse, thenit is O(log(d)+ og(d2)), where d is the same as before
and d2 is the minimum of the out-degree of pt o0 and the in-degree of pf r om

Example 4.3. Fileexanpl es/ si npl e/ i graph_get _eid.c

Added in version 0.2.

| graph_get ei ds — Return edge ids based on the adjacent ver-
tices.

int igraph_get eids(const igraph_t *graph, igraph_vector t *eids,
const igraph_vector_t *pairs,
const igraph_vector_t *path,
i graph_bool t directed, igraph_bool t error);

19

About igraph graphs,
the basic interface

This function operates in two modes. If the pai r s argument is not a null pointer, but the pat h
argument is, then it searchesfor the edgeidsof all pairsof verticesgiveninpai r s. Thepairsof vertex
ids are taken consecutively from the vector, i.e. VECTOR(pai r s) [0] and VECTOR(pai rs) [1]

give thefirst pair, VECTOR(pai rs) [2] and VECTOR(pai rs) [3] the second pair, etc.

If the pai r s argument isanull pointer, and pat h isnot anull pointer, then the pat h isinterpreted
as a path given by vertex ids and the edges along the path are returned.

If neither pai r s nor pat h are null pointers, then both are considered (first pai r s and then pat h),
and the results are concatenated.

If the err or argument is true, then it is an error to give pairs of vertices that are not connected.
Otherwise -1 is reported for not connected vertices.

If there are multiple edges in the graph, then these are ignored; i.e. for a given pair of vertex ids,
always the same edge id is returned, even if the pair is given multiple time in pai r s or in pat h.
Seei graph_get _eids_nul ti () forasimilar function that works differently in case of multiple

edges.

Arguments:

graph: Theinput graph.

ei ds: Pointer to an initialized vector, the result is stored here. It will be resized as needed.

pairs: Vector giving pairs of vertices, or anull pointer.

pat h: Vector giving vertex ids along a path, or anull pointer.

di rected: Logical scalar, whether to consider edge directionsin directed graphs. Thisisignored
for undirected graphs.

error: Logical scalar, whether it is an error to supply non-connected vertices. If false, then

-lisreturned for non-connected pairs.

Returns:
Error code.

Time complexity: O(n log(d)), where n is the number of queried edges and d is the average degree
of the vertices.

See also:

i graph_get eid() forasingleedge,i graph_get eids_nul ti () foraversionthat han-
dles multiple edges better (at a cost).

Example 4.4. Fileexanpl es/ si npl e/ i graph_get eids.c

I graph_get _eids _nmulti — Query edge ids based on their adja-
cent vertices, handle multiple edges.

int igraph_get eids _multi(const igraph_t *graph, igraph_vector_t *eids,
const igraph_vector_t *pairs,
const igraph_vector_t *path,
i graph_bool t directed, igraph_bool t error);

20

About igraph graphs,
the basic interface

This function operates in two modes. If the pai r s argument is not a null pointer, but the pat h
argument is, then it searchesfor the edgeidsof all pairsof verticesgiveninpai r s. Thepairsof vertex
ids are taken consecutively from the vector, i.e. VECTOR(pai r s) [0] and VECTOR(pai rs) [1]

give thefirst pair, VECTOR(pai rs) [2] and VECTOR(pai rs) [3] the second pair, etc.

If thepai r s argument isanull pointer, and pat h isnot anull pointer, then the pat h isinterpreted
as a path given by vertex ids and the edges along the path are returned.

If the err or argument is true, then it is an error to give pairs of vertices that are not connected.
Otherwise -1 is returned for not connected vertex pairs.

An eror istriggered if both pai r s and pat h are non-null pointers.

This function handles multiple edges properly, i.e. if the same pair is given multiple times and they
are indeed connected by multiple edges, then each time a different edgeid is reported.

Arguments:

graph: Theinput graph.

ei ds: Pointer to an initialized vector, the result is stored here. It will be resized as needed.
pairs: Vector giving pairs of vertices, or anull pointer.

pat h: Vector giving vertex ids along a path, or anull pointer.

di rected: Logical scalar, whether to consider edge directionsin directed graphs. Thisisignored
for undirected graphs.

error: Logical scalar, whether to report an error if non-connected vertices are specified. If
false, then -1 is returned for non-connected vertex pairs.
Returns:
Error code.

Time complexity: O(|E|+n log(d)), where |E| is the number of edges in the graph, n is the number of
gueried edges and d is the average degree of the vertices.

See also:

i graph_get eid() forasingleedge, i graph_get ei ds() for afaster version that does
not handle multiple edges.

I graph_nei ghbor s — Adjacent vertices to a vertex.

i nt igraph_nei ghbors(const igraph_t *graph, igraph_vector_t *neis, igraph_integ
i graph_nei node_t node);

Arguments:

graph: Thegraph to work on.

neis: This vector will contain the result. The vector should be initialized beforehand and will
beresized. Starting from igraph version 0.4 this vector is always sorted, the vertex ids are
inincreasing order.

21

About igraph graphs,
the basic interface

pnode: Theid of the node for which the adjacent vertices are to be searched.

node: Defines the way adjacent vertices are searched in directed graphs. It can have the follow-
ing values: | GRAPH_QUT, vertices reachable by an edge from the specified vertex are
searched; | GRAPH_| N, verticesfrom which the specified vertex isreachable are searched;
| GRAPH_ALL, both kinds of vertices are searched. This parameter is ignored for undi-
rected graphs.

Returns:

Error code: | GRAPH_EI NVVI D: invalid vertex id. | GRAPH_ElI NVMODE: invalid mode argument.
| GRAPH_ENOVEM not enough memory.

Time complexity: O(d), d isthe number of adjacent vertices to the queried vertex.

Example 4.5. Fileexanpl es/ si npl e/ i graph_nei ghbors. c

I graph_i nci dent — Gives the incident edges of a vertex.

int igraph_incident(const igraph_t *graph, igraph_vector t *eids, igraph_intege
i graph_nei node_t node);

Arguments:

graph: The graph object.

ei ds: Aninitialized vector_t object. It will be resized to hold the result.

pnode: A vertexid.

node: Specifies what kind of edges to include for directed graphs. | GRAPH_OUT means only
outgoing edges, | GRAPH | N only incoming edges, | GRAPH_ALL both. This parameter
isignored for undirected graphs.

Returns:

Error code. | GRAPH_EI NwVI D: invalid pnode argument, | GRAPH_EI NVMODE: invalid node
argument.

Added in version 0.2.

Time complexity: O(d), the number of incident edgesto pnode.

I graph_is_directed—Isthis adirected graph?

i graph_bool _t igraph_is_directed(const igraph_t *graph);

Arguments:

graph: Thegraph.

Returns:

22

About igraph graphs,
the basic interface

Logical value, TRUE if the graph is directed, FALSE otherwise.

Time complexity: O(1)

Example 4.6. Fileexanpl es/ sinple/igraph_is _directed.c

I graph_i s_sane_graph — Are two graphs identical as labelled
graphs?

int igraph_is_same_graph(const igraph_t *graphl, const igraph_t *graph2, igraph

Two graphs are considered to be the same if they have the same vertex and edge sets. Graphs which
are the same may have multiple different representations in igraph, hence the need for this function.

This function verifies that the two graphs have the same directedness, the same number of vertices,
and that they contain precisely the same edges (regardless of their ordering) when written in terms of
vertex indices. Graph attributes are not taken into account.

This concept is different from isomorphism. For example, the graphs 0-1, 2-1and1-2, 0-1
are considered the same because they only differ in the ordering of their edge lists and the ordering
of vertices in an undirected edge. However, they are not the same as 0- 2, 1- 2, even though they
are isomorphic to it. Note that this latter graph contains the edge 0- 2 while the former two do not
— thustheir edge sets differ.

Arguments:
graphl: Thefirst graph object.

graph2: The second graph object.

res: The result will be stored here.
Returns:
Error code.

Time complexity: O(E), the number of edgesin the graphs.
See also:

igraph_isomorphic() to test if two graphs are isomorphic.

| graph_degr ee — The degree of some vertices in a graph.

i nt igraph_degree(const igraph_t *graph, igraph_vector_t *res,
const igraph_vs_t vids,
i graph_nei node_t node, igraph_bool _t | oops);
Thisfunction calculates the in-, out- or total degree of the specified vertices.

Arguments:

graph: Thegraph.

23

About igraph graphs,
the basic interface

res: Vector, this will contain the result. It should be initialized and will be resized to be the
appropriate size.

vi ds: Vector, giving the vertex ids of which the degree will be calculated.

node: Definesthetypeof thedegree. Valid modesare: | GRAPH_QUT, out-degree; | GRAPH | N,
in-degree; | GRAPH_ALL, total degree (sum of the in- and out-degree). This parameter is
ignored for undirected graphs.

| oops: Boolean, gives whether the self-loops should be counted.

Returns:
Error code: | GRAPH_EI NVVI D: invalid vertex id. | GRAPH_ElI NVMODE: invalid mode argument.

Time complexity: O(v) if loopsis TRUE, and O(v*d) otherwise. v isthe number of verticesfor which
the degree will be calculated, and d istheir (average) degree.

See also:

i graph_strength() fortheversion that takesinto account edge weights.

Example4.7. Fileexanpl es/ si npl e/ i graph_degree. c

Adding and deleting vertices and edges

| graph_add_edge — Adds a single edge to a graph.

int igraph_add_edge(igraph_t *graph, igraph_integer_t from igraph_integer_t to

For directed graphs the edge pointsfrom f r omto t o.

Notethat if you want to add many edgesto abig graph, then it isinefficient to add them one by one, it
is better to collect them into a vector and add all of them viaasinglei gr aph_add_edges() cal.

Arguments:

i graph: Thegraph.

from Theid of thefirst vertex of the edge.
to: Theid of the second vertex of the edge.
Returns:

Error code.
See also:

i graph_add_edges() to add many edges, i gr aph_del et e_edges() to remove edges
andi graph_add _verti ces() toadd vertices.

Time complexity: O(|V|+|E]), the number of edges plus the number of vertices.

24

About igraph graphs,
the basic interface

| graph_add_edges — Adds edges to a graph object.

int igraph_add_edges(igraph_t *graph, const igraph_vector_t *edges,
voi d *attr);

The edges are given in a vector, the first two elements define the first edge (the order isfrom t o
for directed graphs). The vector should contain even number of integer numbers between zero and
the number of vertices in the graph minus one (inclusive). If you also want to add new vertices, call
igraph_add_vertices() first.

Arguments:

graph: Thegraph to which the edges will be added.

edges: The edgesthemselves.

attr: The attributes of the new edges, only used by high level interfaces currently, you can
supply O here.

Returns:

Error code: | GRAPH_EI NVEVECTOR: invalid (odd) edges vector length, | GRAPH_EI NwVI D
invalid vertex id in edges vector.

This function invalidates al iterators.

Time complexity: O(|V[+|E]) where |V| is the number of vertices and |E| is the number of edgesin the
new, extended graph.

Example 4.8. Fileexanpl es/ si npl e/ i graph_add_edges. c

| graph_add _verti ces — Adds vertices to a graph.

int igraph_add vertices(igraph_t *graph, igraph_integer t nv, void *attr);

This function invalidates all iterators.

Arguments:

graph: The graph object to extend.

nv: Non-negative integer giving the number of verticesto add.

attr: Theattributes of the new vertices, only used by highlevel interfaces, you can supply 0 here.

Returns:
Error code: | GRAPH_EI NVAL: invalid number of new vertices.

Time complexity: O(|V|) where |V| is the number of vertices in the new, extended graph.

Example 4.9. Fileexanpl es/ si npl e/ i graph_add_vertices.c

25

About igraph graphs,
the basic interface

| graph_del et e_edges — Removes edges from a graph.

int igraph_del ete _edges(igraph_t *graph, igraph_es t edges);

The edges to remove are given as an edge selector.

This function cannot remove vertices, they will be kept, even if they lose al their edges.
Thisfunction invalidates al iterators.

Arguments:

graph: Thegraph to work on.

edges: Theedgesto remove.

Returns:
Error code.

Time complexity: O(|V|+|E[) where |V| and |E| are the number of vertices and edges in the original
graph, respectively.

Example 4.10. Fileexanpl es/ si npl e/ i gr aph_del et e_edges. ¢

| graph_del ete_verti ces — Removes vertices (with all their
edges) from the graph.

int igraph_delete vertices(igraph_t *graph, const igraph_vs_t vertices);
This function changes the ids of the vertices (except in some very specia cases, but these should not
be relied on anyway).
This function invalidates al iterators.
Arguments:
graph: The graph to work on.
vertices: Theids of the vertices to remove in a vector. The vector may contain the same id
more than once.
Returns:
Error code: | GRAPH_EI NI D: invalid vertex id.

Time complexity: O(|V|+|E]), V| and |E| are the number of vertices and edgesin the original graph.

Example4.11. Fileexanpl es/ si npl e/ i graph_del ete_vertices.c

26

Chapter 5. Error handling

Error handling basics

igraph functions can run into various problems preventing them from normal operation. The user
might have supplied invalid arguments, e.g. a non-square matrix when a square-matrix was expected,
or the program has run out of memory while some more memory allocation is required, etc.

By default igraph aborts the program when it runs into an error. While this behavior might be good
enough for smaller programs, it is without doubt avoidable in larger projects. Please read further if
your project requires more sophisticated error handling. You can safely skip the rest of this chapter
otherwise.

Error handlers

If igraph runs into an error - an invalid argument was supplied to a function, or we've ran out of
memory - the control istransferred to the error handler function.

The default error handler isi gr aph_er r or _handl er _abort which printsan error message and
aborts the program.

Thei graph_set _error _handl er () function can be used to set a new error handler function
of typei gr aph_error _handl er _t ; see the documentation of this type for details.

There are two other predefined error handler functions, i gr aph_er ror _handl er _i gnor e and
i graph_error_handl er _printi gnor e. These deallocate the temporarily allocated memory
(more about this later) and return with the error code. The latter also prints an error message. If you
use these error handlers you need to take care about possible errors yourself by checking the return
value of (almost) every non-void igraph function.

Independently of the error handler installed, all functions in the library do their best to leave their
arguments semantically unchanged if an error happens. By semantically we mean that the implemen-
tation of an object supplied as an argument might change, but its “meaning” in most cases does not.
Therare occasions when thisruleis violated are documented in this manual .

i graph_error _handl er _t — The type of error han-
dler functions.

typedef void igraph_error_handler_t (const char * reason, const char * file,
int line, int igraph_errno);

Thisisthe type of the error handler functions.

Arguments:

reason: Textual description of the error.

file: The source file in which the error is noticed.

line: The number of the line in the source file which triggered the error

i graph_errno: Theigraph error code.

27

Error handling

i graph_error_handl er _abort — Abort program in
case of error,

| GRAPH _EXPORT i graph_error_handl er _t igraph_error_handl er _abort;

The default error handler, prints an error message and aborts the program.

| graph_error_handl er _i gnore — Ignore errors.

| GRAPH_EXPORT i graph_error_handl er _t igraph_error_handl er_i gnore;

This error handler frees the temporarily allocated memory and returns with the error code.

i graph_error_handl er _printignore—Printand
ignore errors.

| GRAPH_EXPORT i graph_error_handl er _t igraph_error_handl er_printignore;

Frees temporarily alocated memory, prints an error message to the standard error and returns with
the error code.

Error codes

Every igraph function which canfail return asingleinteger error code. Somefunctionsarevery simple
and cannot runinto any error, these may return other types, or void aswell. The error codes are defined
by thei graph_error _type_t enumeration.

i graph_error _type t — Error code type.

t ypedef enum {

| GRAPH_SUCCESS = 0,
| GRAPH_FAI LURE = 1,
| GRAPH_ENOVEM = 2,
| GRAPH_PARSEERROR = 3,
| GRAPH_EI NVAL = 4,
| GRAPH_EXI STS = 5,
| GRAPH_EI NVEVECTOR = 6,
| GRAPH_EI NWI D =7,
| GRAPH_NONSQUARE = 8,
| GRAPH_EI NVVODE =9,
| GRAPH_EFI LE = 10,
| GRAPH_UNI MPLEMENTED = 12,
| GRAPH_| NTERRUPTED = 13,
| GRAPH_DI VERGED = 14,
| GRAPH_ARPACK_PROD = 15,
| GRAPH_ARPACK_NPCS = 16,
| GRAPH_ARPACK_NEVNPOS = 17,

Error handling

| GRAPH_ARPACK_NCVSMAL L

| GRAPH_ARPACK_NONPOSI

| GRAPH_ARPACK_WHI CHI NV

| GRAPH_ARPACK_BNATI NV

| GRAPH_ARPACK_WORKLSMAL L

| GRAPH_ARPACK_TRI DERR

| GRAPH_ARPACK_ZEROSTART

| GRAPH_ARPACK_MODEI NV

| GRAPH_ARPACK_MCODEBNVAT

| GRAPH_ARPACK_| SHI FT
| GRAPH_ARPACK_NEVBE
| GRAPH_ARPACK_NOFACT
| GRAPH_ARPACK_FAI LED
| GRAPH_ARPACK_HOMNY
| GRAPH_ARPACK _HOWVNYS
| GRAPH_ARPACK_EVDI FF
| GRAPH_ARPACK_SHUR
| GRAPH_ARPACK_LAPACK
| GRAPH_ARPACK _UNKNOWN
| GRAPH_ENEGLCOP
| GRAPH_EI NTERNAL
| GRAPH_ARPACK_NMAXI T
| GRAPH_ARPACK_NOSHI FT
| GRAPH_ARPACK_REORDER
| GRAPH_EDI VZERO
| GRAPH_GLP_EBOUND
| GRAPH_GLP_EROOT
| GRAPH_GLP_ENOPFS
| GRAPH_GLP_ENODFS
| GRAPH_GLP_EFAI L
| GRAPH_GLP_EM PGAP
| GRAPH_GLP_ETMLI M
| GRAPH_GLP_ESTOP
| GRAPH_EATTRI BUTES
| GRAPH_EATTRCOVBI NE
| GRAPH_ELAPACK
| GRAPH_EDRL
| GRAPH_EOVERFLOW
| GRAPH_EGLP
| GRAPH_CPUTI ME
| GRAPH_EUNDERFLOW
| GRAPH_ERWSTUCK
| GRAPH_STOP
} igraph_error_type_t;

18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36,
37,
38,
39,
40,
41,
42,
43,
44,
45,
46,
47,
48,
49,
50,
51,
52,
53,
54,
55,
56,
57,
58,
59,
60 /* undocumented, used internally */

These are the possible values returned by igraph functions. Note that these are interesting only if
you defined an error handler with i gr aph_set _error _handl er () . Otherwise the program is
aborted and the function causing the error never returns.

Values:
| GRAPH_SUCCESS:

| GRAPH_FAI LURE:

| GRAPH_ENOVEM

| GRAPH_PARSEERRCR:

The function successfully completed its task.

Something went wrong. You'll almost never meet this error as
normally more specific error codes are used.

There wasn't enough memory to allocate on the heap.

A parse error was found in afile.

29

Error handling

| GRAPH_EI NVAL:

| GRAPH_EXI STS:

| GRAPH_EI NVEVECTOR:

| GRAPH_EI NwVI D

| GRAPH_NONSQUARE:

| GRAPH_EI NVMODE:

| GRAPH_EFI LE:

| GRAPH_UNI MPLEMENTED:

| GRAPH_DI VERGED:
| GRAPH_ARPACK_PROD:

| GRAPH_ARPACK_NPCS:

| GRAPH_ARPACK_NEVNPOS:

| GRAPH_ARPACK_NCVSMALL:
| GRAPH_ARPACK_NONPOS :

| GRAPH_ARPACK_WHI CHI NV
| GRAPH_ARPACK_BMATI NV:

| GRAPH_ARPACK_WORKLS-
MALL:

| GRAPH_ARPACK_TRI DERR:

| GRAPH_ARPACK_ZEROSTART:

| GRAPH_ARPACK_MODEI NV:

| GRAPH_ARPACK_MODEBMAT:
| GRAPH_ARPACK_| SHI FT:

| GRAPH_ARPACK_NEVBE:

| GRAPH_ARPACK_NOFACT:

| GRAPH_ARPACK_FAI LED:

| GRAPH_ARPACK_HOMNY:

| GRAPH_ARPACK_HOMNYS:

| GRAPH_ARPACK_EVDI FF:

A parameter'svalueisinvalid. E.g. negative number was spec-
ified as the number of vertices.

A graph/vertex/edgeattributeisalready installed with the given
name.

Invalid vector of vertex ids. A vertex id is either negative or
bigger than the number of vertices minus one.

Invalid vertex id, negative or too big.

A non-sguare matrix was received while a square matrix was
expected.

Invalid mode parameter.

A file operation failed. E.g. afile doesn't exist, or the user has
no rights to open it.

Attempted to call an unimplemented or disabled (at com-
pile-time) function.

A numeric algorithm failed to converge.
Matrix-vector product failed.

N must be positive.

NEV must be positive.

NCV must be bigger.

Maximum number of iterations should be positive.
Invalid WHICH parameter.

Invalid BMAT parameter.

WORKL istoo small.

LAPACK error in tridiagonal eigenvalue calculation.
Starting vector is zero.

MODE isinvalid.

MODE and BMAT are not compatible.

ISHIFT must be 0 or 1.

NEV and WHICH='BE' are incompatible.

Could not build an Arnoldi factorization.

No eigenvalues to sufficient accuracy.

HOWMNY isinvalid.

HOWMNY='S is not implemented.

Different number of converged Ritz values.

30

Error handling

| GRAPH_ARPACK SHUR: Error from calculation of areal Schur form.

| GRAPH_ARPACK_LAPACK: LAPACK (dtrevc) error for calculating eigenvectors.

| GRAPH_ARPACK_UNKNOWN: Unknown ARPACK error.

| GRAPH_ENEGLOOP:

| GRAPH_EI NTERNAL:

| GRAPH_EDI VZERQO!

| GRAPH_GLP_EBOUND:
| GRAPH_GLP_EROOT:

| GRAPH_GLP_ENCPFS:
| GRAPH_GLP_ENODFS:
| GRAPH_GLP_EFAI L:

| GRAPH_GLP_EM PGAP:
| GRAPH_GLP_ETM.I M
| GRAPH_GLP_ESTOP:

| GRAPH_EATTRI BUTES:

| GRAPH_EATTRCOMBI NE:

| GRAPH_ELAPACK:

| GRAPH_EDRL:

| GRAPH_EOVERFLOW

| GRAPH_EGLP:

| GRAPH_CPUTI ME:

| GRAPH_EUNDERFLOW

| GRAPH_ERWSTUCK:

Negative loop detected while calculating shortest paths.
Internal error, likely abug in igraph.
Big integer division by zero.

GLPK error (GLP_EBOUND).
GLPK error (GLP_EROOT).

GLPK error (GLP_ENOPFS).
GLPK error (GLP_ENODFS).
GLPK error (GLP_EFAIL).

GLPK error (GLP_EMIPGAP).
GLPK error (GLP_ETMLIM).
GLPK error (GLP_ESTOP).

Attribute handler error. The user is not expected to find this;
itissignaled if someigraph function is not using the attribute
handler interface properly.

Unimplemented attribute combination method for the given at-
tribute type.

A LAPACK call resulted in an error.
Internal error in the DrL layout generator.
Integer or double overflow.

Internal GLPK error.

CPU time exceeded.

Integer or double underflow.

Random walk got stuck.

| graph_strerror — Textual description of an error.

const char* igraph_strerror(const int igraph_errno);

Thisisasimple utility function, it gives ashort general textual description for an igraph error code.

Arguments:

i graph_errno: Theigraph error code.

31

Error handling

Returns:

pointer to the textual description of the error code.

Warning messages

igraph also supports warning messages in addition to error messages. Warning messagestypically do
not terminate the program, but they are usualy crucial to the user.

igraph warnings are handled similarly to errors. There is a separate warning handler func-
tion that is called whenever an igraph function triggers a warning. This handler can be
set by the i gr aph_set _war ni ng_handl er () function. There are two predefined ssimple
warning handlers, i gr aph_war ni ng_handl er _i gnore() and i gr aph_war ni ng_han-
dl er _print (), thelatter being the default.

To trigger a warning, igraph functions typically use the | GRAPH_WARNI N&) macro, the
i graph_war ni ng() function, or if more flexibility isneeded, i gr aph_war ni ngf () .

i graph_war ni ng_handl er t — The type of igraph
warning handler functions.

typedef igraph_error_handl er _t igraph_warning_handler _t;

Currently it is defined to have the same type asi gr aph_err or _handl er _t, although the last
(error code) argument is not used.

| graph_set war ni ng_handl er — Installs a warning
handler.

i graph_war ni ng_handl er _t* igraph_set_warni ng_handl er (i graph_war ni ng_handl er _t*
Install the supplied warning handler function.
Arguments:
new_handl er: Thenew warning handler functiontoinstall. Supply anull pointer hereto uninstall
the current warning handler, without installing a new one.
Returns:

The current warning handler function.

| GRAPH_WARNI NG— Triggers a warning.

#def i ne | GRAPH_WARNI NG r eason)

Thisisthe usua way of triggering awarning from anigraph function. It calsi gr aph_war ni ng() .

32

Error handling

Arguments:

reason: Thewarning message.

| GRAPH_WARNI NGF — Triggers a warning, with printf-
like syntax.

#def i ne | GRAPH_WARNI NGF

igraph functions can use this macro when they notice awarning and want to pass on extrainformation
to the user about what went wrong. It callsi gr aph_war ni ngf () with the proper parameters and
no error code.

Arguments:

reason: Textual description of thewarning, atemplate string with the same syntax asthe standard
printf C library function.

The additional arguments to be substituted into the template string.

| graph_war ni ng — Triggers a warning.

i nt igraph_warning(const char *reason, const char *file, int line,
int igraph_errno);

Call thisfunction if you want to trigger awarning from within a function that usesigraph.

Arguments:

reason: Textual description of the warning.

file: The source file in which the warning was noticed.

l'ine: The number of linein the source file which triggered the warning.

i graph_errno: Warnings could have potentially error codes as well, but this is currently not
used in igraph.

Returns:

The supplied error code.

| graph_war ni ngf — Triggers a warning, printf-like
version.

i nt igraph_warningf(const char *reason, const char *file, int |ine,
int igraph_errno, ...);

33

Error handling

This function is similar to i gr aph_war ni ng(), but uses a printf-like syntax. It substitutes the
additional argumentsinto ther eason template string and callsi gr aph_war ni ng() .

Arguments:

reason: Textual description of the warning, a template string with the same syntax as
the standard printf C library function.

file: The source file in which the warning was noticed.

line: The number of linein the source file which triggered the warning.

i graph_errno: Warnings could have potentially error codes as well, but this is currently not
used in igraph.

The additional arguments to be substituted into the template string.

Returns:

The supplied error code.

| graph_war ni ng_handl er i gnore — Ignores all
warnings.

voi d i graph_warni ng_handl er _ignore(const char *reason, const char *file,
int line, int igraph_errno);

Thiswarning handler function simply ignores all warnings.

Arguments:

reason: Textual description of the warning.

file: The source file in which the warning was noticed.

l'ine: The number of linein the source file which triggered the warning..

i graph_errno: Warnings could have potentially error codes as well, but this is currently not
used in igraph.

| graph_war ni ng_handl er _pri nt — Prints all warn-
ings to the standard error.

voi d igraph_warni ng_handl er _print(const char *reason, const char *file,
int line, int igraph_errno);

Thiswarning handler function simply prints all warnings to the standard error.

Arguments:
reason: Textual description of the warning.
file: The source file in which the warning was noticed.

34

Error handling

l'ine: The number of linein the source file which triggered the warning..

i graph_errno: Warnings could have potentialy error codes as well, but this is currently not
used in igraph.

Advanced topics

Writing error handlers

The contents of the rest of this chapter might be useful only for those who want to create an interface
to igraph from another language. Most readers can safely skip to the next chapter.

Y ou canwriteandinstall error handlerssimply by defining afunction of typei gr aph_er r or _han-
dl er _t andcalingi graph_set _error_handl er () . Thisfeatureis useful for interface writ-
ers, asigraph will have the chance to signal errors the appropriate way, e.g. the R interface defines
an error handler which callstheer r or () function, asrequired by R, while the Python interface has
an error handler which raises an exception according to the Python way.

If you want to write an error handler, your error handler should call | GRAPH_FI NALLY FREE()
to deallocate all temporary memory to prevent memory leaks.

| graph_set error_handl er — Sets a new error handler.

Error

i graph_error_handl er_t* igraph_set_error_handl er(igraph_error_handl

Installs a new error handler. If called with O, it installs the default error handler (which is currently
i graph_error_handl er _abort).

Arguments:

new_handl er: Theerror handler function to install.

Returns:

The old error handler function. This should be saved and restored if new_handl er isnot needed
any more.

handling internals

If an error happens, the functions in the library call the | GRAPH_ERRCR() macro with a textual
description of the error and an igraph error code. This macro calls (through thei gr aph_error ()
function) the installed error handler. Another useful macro is | GRAPH_CHECK() . This checks the
return value of its argument, which is normally afunction call, and calls| GRAPH_ERROR() if itis
not | GRAPH_SUCCESS.

| GRAPH_ERRCR — Trigger an error.

#def i ne | GRAPH _ERROR(reason, igraph_errno)

igraph functions usually use this macro when they notice an error. It callsi gr aph_error () with
the proper parametersand if that returnsthe macro returnsthe "calling” function aswell, with the error

35

er_t* new_h

Error handling

code. If for some (suspicious) reason you want to call the error handler without returning from the
current function, call i graph_error () directly.

Arguments:

reason: Textual description of the error. This should be something more descriptive than
the text associated with the error code. E.g. if the error codeis| GRAPH_EI N-
VAL, its associated text (seei gr aph_strerror()) is"Invalid value" and
this string should explain which parameter was invalid and maybe why.

i graph_errno: Theigraph error code.

| GRAPH_ERRORF — Triggers an error, with printf-like syntax.

#def i ne | GRAPH_ERRORF

igraph functions can use this macro when they notice an error and want to pass on extrainformation
to the user about what went wrong. It callsi gr aph_errorf () with the proper parameters and
if that returns the macro returns the "calling" function as well, with the error code. If for some (sus-
picious) reason you want to call the error handler without returning from the current function, call
i graph_errorf () directly.

Arguments:

reason: Textual description of the error, a template string with the same syntax as
the standard printf C library function. This should be something more de-
scriptive than the text associated with the error code. E.g. if the error code is
| GRAPH_EI NVAL, its associated text (see i graph_strerror())is"In-
valid value" and this string should explain which parameter was invalid and
maybe what was expected and what was recieved.

i graph_errno: Theigraph error code.

The additional arguments to be substituted into the template string.

| graph_error — Triggers an error.

int igraph_error(const char *reason, const char *file, int l|ine,
int igraph_errno);

igraph functions usually call thisfunction (most often viathe | GRAPH_ERROR macro) if they notice
an error. It callsthe currently installed error handler function with the supplied arguments.

Arguments:

reason: Textual description of the error.

file: The source file in which the error was noticed.

l'ine: The number of linein the source file which triggered the error.

i graph_errno: Theigraph error code.

Returns:

36

Error handling

the error code (if it returns)

See also:

igraph_errorf().

I graph_errorf — Triggers an error, printf-like version.

int igraph_errorf(const char *reason, const char *file, int |ine,

Arguments:
reason:
file:
l'ine:

i graph_errno:

See also:

igraph_error().

int igraph_errno, ...);

Textual description of the error, interpreted asapri nt f format string.
The source file in which the error was noticed.

Theline in the source file which triggered the error.

Theigraph error code.

Additional parameters, the values to substitute into the format string.

| GRAPH CHECK — Checks the return value of a function call.

#def i ne | GRAPH_CHECK(a)

Arguments:

a: Anexpression, usualy afunction call.

Executesthe expression and checksitsvalue. If thisisnot | GRAPH_SUCCESS, it calls| GRAPH_ER-
ROR with the value as the error code. Here is an example usage:

| GRAPH_CHECK(vect or _push_back(&v, 100));

There is only one reason to use this macro when writing igraph functions. If the user installs an
error handler which returnsto the auxiliary calling code (likei gr aph_er ror _handl er _i gnore
andi graph_error _handl er _printignore), and theigraph function signalling the error is
called from another igraph function then we need to make sure that the error is propagated back to
the auxiliary (i.e. non-igraph) calling function. Thisis achieved by using | GRAPH_CHECK on every
igraph call which can return an error code.

Deallocating memory

If afunction runsinto an error (and the program is not aborted) the error handler should deallocate all
temporary memory. Thisis done by storing the address and the destroy function of all temporary ob-

37

Error handling

jectsin astack. Thel GRAPH_FI NALLY function declares an object as temporary by placing its ad-
dressin the stack. If an igraph function returns with successit calls| GRAPH_FI NALLY_CLEAN()
with the number of objects to remove from the stack. If an error happens however, the error handler
should call | GRAPH_FI NALLY_FREE() to deallocate each object added to the stack. This means
that the temporary objects alocated in the calling function (and etc.) will be freed aswell.

| GRAPH_FI NALLY — Registers an object for deallocation.

#def i ne | GRAPH _FI NALLY(func, ptr)

Arguments:
func: Theaddress of the function which is normally called to destroy the object.
ptr: Pointer to the object itself.

This macro places the address of an object, together with the address of its destructor in a stack. This
stack isused if an error happens to deallocate temporarily allocated objects to prevent memory leaks.

| GRAPH_FI NALLY_ CLEAN— Signals clean deallocation of ob-
jects.

voi d | GRAPH_FI NALLY_CLEAN(i nt numj;

Removes the specified number of objects from the stack of temporarily allocated objects. Most often
thisis called just before returning from afunction.

Arguments:

num The number of objectsto remove from the bookkeeping stack.

| GRAPH _FI NALLY FREE — Deallocates all registered objects.

voi d | GRAPH_FI NALLY_FREE(voi d);

Calls the destroy function for all objectsin the stack of temporarily allocated objects. Thisis usually
called only from an error handler. It is not appropriate to use it instead of destroying each unneeded
object of afunction, asit destroys the temporary objects of the caller function (and so on) as well.

Writing igraph functions with proper error handling

There are some simple rules to keep in order to have functions behaving well in erroneous situa-
tions. First, check the arguments of the functions and call | GRAPH_ERROR() if they are invalid.
Second, call | GRAPH_FI NALLY on each dynamically allocated object and call | GRAPH_FI NAL-
LY _CLEAN() withthe proper argument beforereturning. Third, usel GRAPH_CHECK on al igraph
function calls which can generate errors.

The size of the stack used for this bookkeeping is fixed, and small. If you want to allocate several
objects, write a destroy function which can deallocate all of these. Seethe adj | i st . ¢ filein the
igraph source for an example.

38

Error handling

For some functions these mechanisms are simply not flexible enough. These functions should define
their own error handlers and restore the error handler before they return.

Fatal errors

In some rare situations, igraph may encounter an internal error that cannot be fully handled. In this
case, it will call the current fatal error handler. The default fatal error handler simply prints the error
and aborts the program.

Fatal error handlers do not return. Typically, they might abort the the program immediately, or in
the case of the high-level igraph interfaces, they might return to the top level using al ongj np() .
The fatal error handler is only called when a serious error has occurred, and as a result igraph may
be in an inconsistent state. The purpose of returning to the top level is to give the user a chance to
save their work instead of aborting immediately. However, the program session should be restarted
as soon as possible.

Most projects that use igraph will use the default fatal error handler.

| graph_fatal handl er _t — The type of igraph fatal error han-
dler functions.

typedef void igraph_fatal handler_t (const char *reason, const char *file, int |
Functions of this type must not return. Typically they call abort () ordoal ongj np() .

Arguments:

reason: Textual description of the error.

file: The source file in which the error is noticed.

line: The number of the line in the source file which triggered the error

| graph_fatal handl er _abort — Abort program in case of fa-
tal error.

| GRAPH _EXPORT i graph_fatal handl er _t igraph fatal handl er _abort;

The default fatal error handler, prints an error message and aborts the program.

| GRAPH_FATAL — Triggers a fatal error.

#def i ne | GRAPH _FATAL(reason)
Thisisthe usua way of triggering afatal error from an igraph function. It callsi gr aph_fatal ().

Use thismacro only in situations where the error cannot be handled. The normal way to handle errors
is| GRAPH_ERROR() .

Arguments:

reason: Theerror message.

39

Error handling

| GRAPH_FATALF — Triggers a fatal error, with printf-like syntax.

#defi ne | GRAPH_FATALF

igraph functions can use this macro when afatal error occurs and want to pass on extra information
to the user about what went wrong. It callsi gr aph_f at al f () with the proper parameters.

Arguments:

reason: Textual description of the error, atemplate string with the same syntax as the standard
printf C library function.

The additional arguments to be substituted into the template string.

| GRAPH_ASSERT — igraph-specific replacement for assert ().

#def i ne | GRAPH_ASSERT(condi ti on)

This macrois like the standard assert (), but instead of calling abort (), it calsi graph_f a-
tal (). Thisalowsfor returning the control to the calling program, e.g. returning to the top level in
ahigh-level igraph interface.

Unlikeassert (), GRAPH_ASSERT() isnot disabled when the NDEBUG macro is defined.

This macro is meant for internal use by igraph.

Since atypial fatal error handler doesal ongj np() , avoid using this macro in C++ code. With most
compilers, destructor will not be called when| ongj np() leavesthe current scope.

Arguments:

condi ti on: The condition to be checked.

I graph_fatal — Triggers a fatal error.

| GRAPH_NORETURN voi d igraph_fatal (const char *reason, const char *file, int |if

This function triggers a fatal error. Typicaly it is called indirectly through | GRAPH _FATAL() or
| GRAPH_ASSERT() .

Arguments:
reason: Textua description of the error.
file: The source file in which the error was noticed.

l'ine: The number of linein the source file which triggered the error.

I graph_fatal f — Triggers a fatal error, printf-like syntax.

40

Error handling

| GRAPH_NORETURN voi d i graph_fatalf(const char *reason, const char *file, int |]

Thisfunctionissimilar toi graph_f at al (), but uses a printf-like syntax. It substitutes the addi-
tional argumentsinto ther eason template string and callsi gr aph_f atal ().

Arguments:

reason: Textual description of the error.

file: The source file in which the error was noticed.

line: The number of linein the source file which triggered the error.

The additional arguments to be substituted into the template string.

Error handling and threads

Itislikely that theigraph error handling method is not thread-safe, mainly because of the static global
stack which is used to store the address of the temporarily alocated objects. This issue might be
addressed in alater version of igraph.

41

Chapter 6. Memory (de)allocation

| graph_mal | oc — Allocate memory that can
be safely deallocated by igraph functions.

void *igraph_nalloc(size_t n);

Some igraph functions, such as i graph_vector _ptr _free_all () and i graph_vec-
tor_ptr_destroy_all () can free memory that may have been alocated by the user.
i graph_mal | oc() works exactly like mal | oc() from the C standard library, but it is guaranteed
that it can be safely paired with the f r ee() function used by igraph internally (which is also user-
accessiblethroughi graph_free()).

Arguments:

n: Number of bytesto be allocated.

Returns:

Pointer to the piece of allocated memory.

See also:

i graph_free()

| gr aph_free — Deallocate memory that was
allocated by igraph functions.

void igraph_free(void *p);

Someigraph functionsreturn apointer vector (igraph_vector_ptr_t) containing pointersto other igraph
or other data types. These data types are dynamically allocated and have to be deallocated manually
when the user does not need them any more. This can be done by calling igraph_free on them.

Hereis acomplete example on how to usei gr aph_f r ee properly.

Example 6.1. Fileexanpl es/ si npl e/igraph_free.c

Arguments:

p: Pointer to the piece of memory to be deallocated.

Returns:
Error code, currently always zero, meaning success.

Time complexity: platform dependent, ideally it should be O(2).

42

Memory (de)allocation

See also:

i graph_mal | oc()

43

Chapter 7. Data structure library:
vector, matrix, other data types

About template types

Some of the container types listed in this section are defined for many base types. This is similar
to templates in C++ and generics in Ada, but it is implemented via preprocessor macros since the
C language cannot handle it. Here is the list of template types and the all base types they currently

support:

vector

matrix

array3

stack

double-ended queue

heap

Vector is currently defined for igraph_real_t, longint (long), char
(char), igraph_bool _t (bool). The default isigraph_real t.

Matrix is currently defined for igraph_real t, longint (long), char
(char), igraph_bool _t (bool). The default isigraph_real t.

Array3iscurrently defined for igraph_real_t, longint (long), char
(char), igraph_bool _t (bool). The default isigraph_real t.

Stack is currently defined for igraph_real_t, long int (long), char
(char), igraph_bool _t (bool). The default isigraph_real t.

Dqueueiscurrently definedfor igraph _rea_t, longint (long), char
(char), igraph_bool_t (bool). The default isigraph_real t.

Heap is currently defined for igraph_real_t, long int (long), char
(char). In addition both maximum and minimum heaps are avail-
able. The default isthe igraph_real_t maximum heap.

The name of the base element (in parentheses) is added to the function names, except for the default

type.

Some examples:

* igraph_vector_tisavector of igraph_real_t elements. Itsfunctionsarei gr aph_vector _ini t,
i graph_vector _destroy,igraph_vector_sort, etc.

* igraph_vector_bool_t is a vector of igraph bool_t elements, initialize it with i gr aph_vec-
tor _bool _init,destroyitwithi graph_vect or _bool _destroy, etc.

* igraph_heap_t is a maximum heap with igraph_real_t elements. The corresponding functions are
i graph_heap_init,igraph_heap_pop, etc.

* igraph_heap_min_t is a minimum heap with igraph_real_t elements. The corresponding functions
arecaledi graph_heap_m n_init,i graph_heap_m n_pop, etc.

* igraph heap long_t is a maximum heap with long int elements. Its function have the

i graph_heap_| ong_ prefix.

* igraph_heap_min_long_t is a minimum heap containing long int elements. Its functions have the
i graph_heap_mi n_| ong_ prefix.

Note that the VECTOR and the MATRIX macros can be used on all vector and matrix types.

Data structure library: vec-
tor, matrix, other datatypes

Vectors

About igraph_vector_t objects

The igraph_vector_t data type is a simple and efficient interface to arrays containing numbers. It is
something similar as (but much simpler than) the vector template in the C++ standard library.

Vectors are used extensively in igraph, all functions which expect or return a list of numbers use
igraph_vector_t to achievethis.

Theigraph_vector_t type usually uses O(n) space to store n elements. Sometimes it uses more, thisis
because vectors can shrink, but even if they shrink, the current implementation does not free asingle
bit of memory.

The elementsin an igraph_vector_t object are indexed from zero, we follow the usua C convention
here.

The elements of avector aways occupy asingle block of memory, the starting address of this memory
block can be queried with the VECTOR macro. This way, vector objects can be used with standard
mathematical libraries, like the GNU Scientific Library.

Constructors and Destructors

igraph_vector_t objects have to be initialized before using them, this is analogous to caling a
constructor on them. There are a number of igraph_vector_t constructors, for your convenience.
i graph_vector _init() isthebasic constructor, it creates a vector of the given length, filled
with zeros. i gr aph_vect or _copy() createsanew identical copy of an aready existing and ini-
tialized vector. i gr aph_vector _i nit_copy() creates avector by copying a regular C array.
i graph_vector _init_seq() creates a vector containing a regular sequence with increment
one.

i graph_vector _vi ew() isaspecia constructor, it allows you to handle aregular C array as a
vector without copying its el ements.

If aigraph_vector_t object isnot needed any more, it should be destroyed to freeits allocated memory
by calling theigraph_vector_t destructor, i gr aph_vect or _dest roy().

Note that vectors created by igraph_vector_view() are specia, you mustn't cal
i graph_vector_destroy() onthese.

I graph_vector init —Initializes a vector object (constructor).

int igraph_vector _init(igraph_vector t* v, int long size);

Every vector needs to be initialized before it can be used, and there are a number of initialization
functions or otherwise called constructors. This function constructs a vector of the given size and
initializes each entry to 0. Notethat i gr aph_vect or _nul I () can be used to set each element of
avector to zero. However, if you want a vector of zeros, it is much faster to use this function than to
create avector and theninvokei gr aph_vector _nul I ().

Every vector object initialized by this function should be destroyed (ie. the memory allocated for it
should be freed) when it is not needed anymore, the i gr aph_vect or _destroy() functionis
responsible for this.

Arguments:

45

Data structure library: vec-
tor, matrix, other datatypes

V: Pointer to a not yet initialized vector object.

si ze: Thesize of the vector.

Returns:
error code: | GRAPH_ENOMVEMIf there is hot enough memory.

Time complexity: operating system dependent, the amount of “time” required to allocate O(n) ele-
ments, n is the number of elements.

I graph_vector _init_copy — Initializes a vector from an ordi-
nary C array (constructor).

int igraph_vector_init_copy(igraph_vector_t *v,
const igraph_real t *data, long int |engt

Arguments:
V: Pointer to an uninitialized vector object.
dat a: A regular C array.

[engt h: Thelength of the C array.

Returns:
Error code: | GRAPH_ENQVEMIf there is not enough memory.
Time complexity: operating system specific, usually O(I engt h).

| graph_vector init_seq— Initializes a vector with a se-
guence.

int igraph_vector_init_seq(igraph_vector_t *v,
igraph_real t from igraph_real_t to);
The vector will contain the numbersfrom fromtl, ..., t o.
Arguments:
V! Pointer to an uninitialized vector object.
from Thelower limit in the sequence (inclusive).

to: The upper limit in the sequence (inclusive).

Returns:
Error code: | GRAPH_ENQVEM out of memory.

Time complexity: O(n), the number of elements in the vector.

46

Data structure library: vec-
tor, matrix, other datatypes

I graph_vect or _copy — Initializes a vector from another vector
object (constructor).

int igraph_vector_copy(igraph_vector_t *to,
const igraph_vector_t *from;
The contents of the existing vector object will be copied to the new one.
Arguments:
t o: Pointer to a not yet initialized vector object.

from Theorigina vector object to copy.

Returns:
Error code: | GRAPH_ENQVEMIf there is not enough memory.

Time complexity: operating system dependent, usually O(n), n isthe size of the vector.

| graph_vect or _destroy — Destroys a vector object.

voi d igraph_vector_destroy(igraph_vector_t* v);

All vectors initialized by i gr aph_vect or _i ni t () should be properly destroyed by this func-
tion. A destroyed vector needs to be reinitialized by i gr aph_vector _init(),i graph_vec-
tor _init_copy() oranother constructor.

Arguments:

v: Pointer to the (previously initialized) vector object to destroy.

Time complexity: operating system dependent.
Initializing elements

I graph_vector _null — Sets each element in the vector to zero.

voi d igraph_vector_null (igraph_vector_t* v);

Notethati graph_vector _i nit() setstheeementsto zero aswell, so it makes no senseto call
this function on a just initialized vector. Thus if you want to construct a vector of zeros, then you
shouldusei graph_vector _init().

Arguments:
v: Thevector object.

Time complexity: O(n), the size of the vector.

47

Data structure library: vec-
tor, matrix, other datatypes

i graph_vector _fill — Fill avector with a constant element

void igraph_vector_fill(igraph_vector_t* v, igraph_real_t e);
Sets each element of the vector to the supplied constant.

Arguments:

vector: The vector to work on.

e: The element to fill with.

Time complexity: O(n), the size of the vector.

Accessing elements

The simplest way to access an element of a vector is to use the VECTOR macro. This macro can be
used both for querying and setting igraph_vector_t elements. If you need afunction, i gr aph_vec-
tor_e() queriesand i graph_vector_set () sets an element of a vector. i gr aph_vec-
tor_e_ptr () returnsthe address of an element.

i graph_vector_tail () returns the last element of a non-empty vector. There is no
i graph_vect or _head() function however, asit is easy to write VECTOR(v) [0] instead.

VECTOR — Accessing an element of a vector.

#def i ne VECTOR(V)

Usage:
VECTOR(V) [0]

to access the first element of the vector, you can also use thisin assignments, like:
VECTOR(V) [10] =5;

Note that there are no range checks right now. This functionality might be redefined later as a real
function instead of a#def i ne.

Arguments:
v: Thevector object.

Time complexity: O(1).

I graph_vect or _e — Access an element of a vector.

i graph_real t igraph_vector _e(const igraph _vector t* v, long int pos);

Arguments:

V: Theigraph_vector_t object.

48

Data structure library: vec-
tor, matrix, other datatypes

pos: The position of the element, the index of the first element is zero.

Returns:

The desired element.

See also:
i graph_vector_e_ptr() andthe VECTOR macro.

Time complexity: O(1).

| graph_vector e ptr — Get the address of an element of a
vector

i graph_real t* igraph_vector_e ptr(const igraph vector t* v, long int pos);

Arguments:
V: The igraph_vector_t object.

pos: The position of the element, the position of the first element is zero.

Returns:

Pointer to the desired element.

See also:
i graph_vector _e() andthe VECTOR macro.

Time complexity: O(1).

| graph_vector_set — Assignment to an element of a vector.

voi d igraph_vector_set (igraph_vector_t* v,
long int pos, igraph_real _t value);

Arguments:
& Theigraph_vector_t element.
pos: Position of the element to set.

val ue: New value of the element.

See also:

i graph_vector_e().

49

Data structure library: vec-
tor, matrix, other datatypes

| graph_vector _tail — Returns the last element in a vector.

i graph_real _t igraph_vector_tail (const igraph_vector_t *v);

It isan error to call this function on an empty vector, the result is undefined.
Arguments:

v: Thevector object.

Returns:
The last e ement.

Time complexity: O(1).
Vector views

| graph_vector _vi ew— Handle aregular C array as a
igraph_vector _t.

const igraph_vector_t*igraph_vector_view const igraph_vector_t *v,
const igraph_real t *data,
long int |ength);

Thisisaspecial igraph_vector_t constructor. It allowsto handlearegular C array asaigraph_vector_t
temporarily. Be sure that you don't ever call the destructor (i gr aph_vect or _destroy()) on
objects created by this constructor.

Arguments:
V! Pointer to an uninitialized igraph_vector_t object.
dat a: Pointer, the C array. It may not be NULL.

[engt h: Thelength of the C array.

Returns:
Pointer to the vector object, the same asthe v parameter, for convenience.

Time complexity: O(1)
Copying vectors

| graph_vector_copy_t o — Copies the contents of a vector to a
C array.

voi d igraph_vector_copy_to(const igraph_vector t *v, igraph_ real t *to);

50

Data structure library: vec-
tor, matrix, other datatypes

The C array should have sufficient length.
Arguments:

V: The vector object.

to: TheCarray.

Time complexity: O(n), n isthe size of the vector.

I gr aph_vect or _updat e — Update a vector from another one.

i nt igraph_vector_update(igraph_vector_t *to,
const igraph_vector_t *from;

After this operation the contents of t 0 will be exactly the same as that of f r om The vector t o will
be resized if it was originally shorter or longer than f r om

Arguments:
t o: The vector to update.

from Thevector to update from.

Returns:
Error code.

Time complexity: O(n), the number of elementsinfr om

| graph_vector append — Append a vector to another one.

i nt igraph_vector_append(igraph_vector_t *to,
const igraph_vector_t *from;

The target vector will be resized (except when f r omis empty).
Arguments:
t o: The vector to append to.

from Thevector to append, it is kept unchanged.

Returns:
Error code.

Time complexity: O(n), the number of elementsin the new vector.

I graph_vect or _swap — Swap elements of two vectors.

int igraph_vector_swap(igraph_vector_t *vl, igraph_vector_t *v2);

51

Data structure library: vec-
tor, matrix, other datatypes

The two vectors must have the same length, otherwise an error happens.
Arguments:
v1l: Thefirst vector.

v2: The second vector.

Returns:
Error code.

Time complexity: O(n), the length of the vectors.

Exchanging elements

| graph_vector_swap_el enment s — Swap two elements in a vec-
tor.

int igraph_vector_swap_el enents(igraph_vector _t *v,
long int i, long int j);

Note that currently no range checking is performed.
Arguments:

v: Theinput vector.

i © Index of thefirst element.

j © Index of the second element (may be the same asthe first one).

Returns:

Error code, currently always | GRAPH_SUCCESS.
Time complexity: O(1).

| graph_vector reverse — Reverse the elements of a vector.

int igraph_vector_reverse(igraph_vector_t *v);
The first element will be last, the last element will befirst, etc.
Arguments:

v: Theinput vector.

Returns:
Error code, currently always | GRAPH_SUCCESS.

Time complexity: O(n), the number of elements.

52

Data structure library: vec-
tor, matrix, other datatypes

I graph_vector _shuffl e — Shuffles a vector in-place using the
Fisher-Yates method

int igraph_vector_shuffle(igraph vector_ t *v);

The Fisher-Y ates shuffle ensures that every permutation is equally probable when using a proper
randomness source. Of course this does not apply to pseudo-random generators as the cycle of these
generatorsis less than the number of possible permutations of the vector if the vector islong enough.

Arguments:

v: Thevector object.

Returns:

Error code, currently always | GRAPH _SUCCESS.
Time complexity: O(n), nisthe number of elementsin the vector.
References:

(Fi sher & Yates 1963) R. A.Fisher and F. Yates. Satistical Tables for Biological, Agri-
cultural and Medical Research. Oliver and Boyd, 6th edition, 1963,

page 37.

(Knut h 1998) D. E. Knuth. Seminumerical Algorithms, volume 2 of The Art of
Computer Programming. Addison-Wesley, 3rd edition, 1998, page
145.

Example 7.1 File exanpl es/ si npl e/

i graph_fisher_yates shuffle.c

Vector operations

I graph_vect or _add_const ant — Add a constant to the vector.

voi d igraph_vector_add _constant (i graph_vector _t *v, igraph_real t plus);
pl us isadded to every element of v. Note that overflow might happen.

Arguments:

V! The input vector.

pl us: The constant to add.

Time complexity: O(n), the number of elements.

| graph_vect or _scal e — Multiply all elements of a vector by a
constant

53

Data structure library: vec-
tor, matrix, other datatypes

voi d igraph_vector_scal e(i graph_vector_t *v, igraph_real t by);

Arguments:
V: The vector.

by: Theconstant.

Returns:
Error code. The current implementation always returns with success.
Added in version 0.2.

Time complexity: O(n), the number of elementsin avector.

| graph_vector add — Add two vectors.

int igraph_vector_add(igraph_vector t *vi,
const igraph_vector_t *v2);

Add the elements of v2 tov1, theresult isstored in v1. The two vectors must have the same length.
Arguments:
v1l: Thefirst vector, the result will be stored here.

v2: The second vector, its contents will be unchanged.

Returns:
Error code.

Time complexity: O(n), the number of elements.

I graph_vect or _sub — Subtract a vector from another one.

int igraph_vector_sub(igraph_vector t *vi1,
const igraph_vector_t *v2);

Subtract the elements of v2 from v1, theresult is stored in v1. The two vectors must have the same
length.

Arguments:
vl: Thefirst vector, to subtract from. Theresult is stored here.

v2: Thevector to subtract, it will be unchanged.

Returns:

Error code.

Data structure library: vec-
tor, matrix, other datatypes

Time complexity: O(n), the length of the vectors.

| graph_vector rnmul — Multiply two vectors.

int igraph_vector_mul (igraph_vector_t *vl,
const igraph_vector_t *v2);

v1 will be multiplied by v2, elementwise. The two vectors must have the same length.
Arguments:
v1l: Thefirst vector, the result will be stored here.

v2: Thesecond vector, it isleft unchanged.

Returns:
Error code.

Time complexity: O(n), the number of elements.

I graph_vect or _di v — Divide a vector by another one.

int igraph_vector _div(igraph_vector t *vi,
const igraph_vector_t *v2);

v1 isdivided by v2, elementwise. They must have the same length. If the base type of the vector can
generate divide by zero errors then please make sure that v2 contains no zero if you want to avoid
trouble.

Arguments:
vl: Thedividend. Theresultisaso stored here.

v2: Thedivisor, it isleft unchanged.

Returns:
Error code.

Time complexity: O(n), the length of the vectors.

| graph_vector fl oor — Transform areal vector to along vec-
tor by flooring each element.

int igraph_vector_floor(const igraph_vector_t *from igraph_vector _long t *to);

Flooring means rounding down to the nearest integer.
Arguments:

from Theorigina real vector object.

55

Data structure library: vec-
tor, matrix, other datatypes

t o: Pointer to an initialized long vector. The result will be stored here.

Returns:
Error code: | GRAPH_ENQVEM out of memory

Time complexity: O(n), where n is the number of elementsin the vector.

Vector comparisons

| graph_vector _all e — Are all elements equal?

i graph_bool _t igraph_vector_all _e(const igraph_vector_t *I|hs,
const igraph_vector_t *rhs);

Arguments:

| hs: Thefirst vector.

rhs: Thesecond vector.

Returns:

Positive integer (=true) if the elementsin the | hs are all equal to the corresponding elements in
r hs. Returns 0 (=falsg) if the lengths of the vectors don't match.

Time complexity: O(n), the length of the vectors.

I graph_vector _all | — Are all elements less?

i graph_bool t igraph_vector_all _|(const igraph_vector t *|hs,
const igraph_vector_t *rhs);

Arguments:

I hs: Thefirst vector.

rhs: Thesecond vector.

Returns:
Positive integer (=true) if the elementsin the | hs are al less than the corresponding elementsin
rhs. Returns O (=false) if the lengths of the vectors don't match. If any element is NaN, it will
return O (=false).

Time complexity: O(n), the length of the vectors.

I graph_vector _all _g— Are all elements greater?

56

Data structure library: vec-
tor, matrix, other datatypes

i graph_bool _t igraph_vector_all _g(const igraph_vector_t *Ihs,
const igraph_vector_t *rhs);

Arguments:

I hs: Thefirst vector.

rhs: The second vector.

Returns:
Positive integer (=true) if the elementsin the | hs are all greater than the corresponding elements
inr hs. Returns O (=false) if the lengths of the vectors don't match. If any element is NaN, it will
return O (=false).

Time complexity: O(n), the length of the vectors.

I graph_vector_all | e— Are all elements less or equal?
i graph_bool _t
i graph_vector_all _|e(const igraph_vector_t *Ihs,

const igraph_vector_t *rhs);

Arguments:
| hs: Thefirst vector.

rhs: Thesecond vector.

Returns:
Positive integer (=true) if the elementsin the | hs are al less than or equal to the corresponding
dementsinr hs. Returns0 (=false) if the lengths of the vectorsdon't match. If any elementisNaN,
it will return O (=false).

Time complexity: O(n), the length of the vectors.

I graph_vector _all ge — Are all elements greater or equal?

i graph_bool _t
i graph_vector_all _ge(const igraph_vector_t *Ihs,

const igraph_vector_t *rhs);
Arguments:

| hs: Thefirst vector.

rhs: The second vector.

Returns:

57

Data structure library: vec-
tor, matrix, other datatypes

Positiveinteger (=true) if the elementsinthel hs areall greater than or equal to the corresponding
dementsinr hs. Returns0 (=false) if the lengths of the vectorsdon't match. If any elementisNaN,
it will return O (=false).

Time complexity: O(n), the length of the vectors.

| graph_vector | ex _cnp — Lexicographical comparison of two
vectors.

int igraph_vector_lex_cnp(const void *Ihs, const void *rhs);

If the elements of two vectors match but one is shorter, the shorter one comesfirst. Thus{1, 3} comes
after {1, 2, 3}, but before{1, 3, 4}.

Thisfunction istypically used together withi gr aph_vector _ptr_sort ().

Arguments:

| hs: Pointer to a pointer to thefirst vector (interpreted asani gr aph_vector _t **).

rhs: Pointer to apointer to the second vector (interpreted asani gr aph_vector _t **),

Returns:

-1if | hs islexicographically smaler, 0if | hs andr hs are egual, else 1.

See also:
i graph_vector _col ex_cnp() tocompare vectors starting from the last element.

Time complexity: O(n), the number of elementsin the smaller vector.

Example7.2. Fileexanpl es/ si npl e/ i graph_vector_ptr_sort.c

| graph_vector _col ex_cnp — Colexicographical comparison of
two vectors.

int igraph_vector_col ex_cnp(const void *Ihs, const void *rhs);

This comparison starts from the last element of both vectors and moves backward. If the elements of
two vectors match but one is shorter, the shorter one comes first. Thus{1, 2} comes after {3, 2, 1},
but before {0, 1, 2}.

Thisfunction istypically used together with i gr aph_vector _ptr_sort ().
Arguments:
| hs: Pointer to apointer to the first vector (interpreted asani gr aph_vector _t **).

rhs: Pointer to a pointer to the second vector (interpreted asani gr aph_vect or _t **).

58

Data structure library: vec-
tor, matrix, other datatypes

Returns:

-1if I hs inreverse order islexicographically smaller than thereverse of r hs, Oif | hs and r hs
areequd, else 1.

See also:

i graph_vector_| ex_cnp() tocompare vectors starting from the first element.

Time complexity: O(n), the number of elements in the smaller vector.

Example7.3. Fileexanpl es/ si npl e/ i graph_vector_ptr_sort.c

Finding minimum and maximum

I graph_vect or _m n — Smallest element of a vector.

i graph_real t igraph_vector_m n(const igraph_vector t* v);
The vector must be non-empty.
Arguments:

v: Theinput vector.

Returns:

The smallest element of v, or NaN if any element is NaN.

Time complexity: O(n), the number of elements.

| graph_vect or _nax — Largest element of a vector.

i graph_real _t igraph_vector_max(const igraph_vector_t* v);

If the size of the vector is zero, an arbitrary number is returned.
Arguments:

v: Thevector object.

Returns:

The maximum element of v, or NaN if any element is NaN.

Time complexity: O(n), the number of elements.

I graph_vector_whi ch_m n — Index of the smallest element.

59

Data structure library: vec-
tor, matrix, other datatypes

I ong int igraph_vector_which_m n(const igraph_vector_t* v);

The vector must be non-empty. If the smallest element is not unique, then the index of the first is
returned. If the vector contains NaN values, the index of the first NaN value is returned.
Arguments:

v: Theinput vector.

Returns:
Index of the smallest element.
Time complexity: O(n), the number of elements.

I graph_vect or _whi ch_nmax — Gives the index of the maximum
element of the vector.

long int igraph_vector_which_max(const igraph vector t* v);

If the size of the vector is zero, -1 is returned. If the largest element is not unique, then the index of
thefirst isreturned. If the vector contains NaN values, the index of the first NaN value is returned.
Arguments:

v: Thevector object.

Returns:
The index of the first maximum element.
Time complexity: O(n), nisthe size of the vector.

I graph_vect or _m nmax — Minimum and maximum elements of
a vector.

i nt igraph_vector_m nnmax(const igraph_vector_t *v,
i graph_real _t *min, igraph_real _t *nmax);

Handy if you want to have both the smallest and largest element of avector. Thevector isonly traversed
once. The vector must be non-empty. If a vector contains at least one NaN, both m n and max will
be NaN.

Arguments:
V: Theinput vector. It must contain at |east one element.
m n: Pointer to a base type variable, the minimum is stored here.

max: Pointer to a base type variable, the maximum is stored here.

Returns:

60

Data structure library: vec-
tor, matrix, other datatypes

Error code.
Time complexity: O(n), the number of elements.

| graph_vect or _whi ch_m nmax — Index of the minimum and
maximum elements

i nt igraph_vector_which_m nmax(const igraph_vector _t *v,
long int *which_nin, long int *which_max);

Handy if you need the indices of the smallest and largest elements. The vector is traversed only once.
The vector must be non-empty. If the minimum or maximum is not unique, the index of the first
minimum or the first maximum is returned, respectively. If a vector contains at least one NaN, both
whi ch_m n and whi ch_max will point to the first NaN value.

Arguments:
V: Theinput vector. It must contain at |east one element.
whi ch_m n: Theindex of the minimum element will be stored here.

whi ch_max: Theindex of the maximum element will be stored here.

Returns:
Error code.

Time complexity: O(n), the number of elements.

Vector properties

I graph_vect or _enpty — Decides whether the size of the vector
IS zero.

i graph_bool t igraph_vector_enpty(const igraph_vector t* v);

Arguments:

v: Thevector object.

Returns:

Non-zero number (true) if the size of the vector is zero and zero (false) otherwise.
Time complexity: O(1).

| graph_vect or _si ze — Returns the size (=length) of the vector.

long int igraph_vector_size(const igraph_vector_t* v);

61

Data structure library: vec-
tor, matrix, other datatypes

Arguments:

v: Thevector object

Returns:
The size of the vector.
Time complexity: O(1).

| graph_vector capacity — Returns the allocated capacity of
the vector

long int igraph_vector capacity(const igraph_vector t*v);

Note that this might be different from the size of the vector (as queried by i graph_vec-
tor _si ze(), and specifies how many elements the vector can hold, without reall ocation.

Arguments:

v: Pointer to the (previoudly initialized) vector object to query.

Returns:

The allocated capacity.

See also:
i graph_vector_size().
Time complexity: O(1).

| graph_vect or _sum— Calculates the sum of the elements in
the vector.

i graph_real _t igraph_vector_sun(const igraph_vector_t *v);

For the empty vector 0.0 is returned.
Arguments:

v: Thevector object.

Returns:
The sum of the elements.
Time complexity: O(n), the size of the vector.

| graph_vector _prod — Calculates the product of the elements
in the vector.

62

Data structure library: vec-
tor, matrix, other datatypes

i graph_real _t igraph_vector_prod(const igraph_vector_t *v);

For the empty vector one (1) is returned.
Arguments:

v: Thevector object.

Returns:
The product of the elements.
Time complexity: O(n), the size of the vector.

| graph_vector isininterval — Checks if all elements of a
vector are in the given

i graph_bool _t igraph_vector_isininterval (const igraph_vector_t *v,
i graph_real _t | ow,
i graph_real _t high);

interval.

Arguments:

V! The vector object.

| ow: The lower limit of theinterval (inclusive).

hi gh: Thehigher limit of the interval (inclusive).

Returns:

True (positiveinteger) if all vector elementsareintheinterval, false (zero) otherwise. If any element
isNaN, it will return O (=false).

Time complexity: O(n), the number of elements in the vector.

I graph_vector maxdi ff erence — The maximum absolute dif-
ference of nl and n®

i graph_real t igraph_vector naxdifference(const igraph_vector t *ni,
const igraph_vector_t *nR);

The element with the largest absolute valuein mlL - n® is returned. Both vectors must be non-empty,
but they not need to have the same length, the extra elements in the longer vector are ignored. If any
valueis NaN in the shorter vector, the result will be NaN.

Arguments:
ml: Thefirst vector.

n2: The second vector.

63

Data structure library: vec-
tor, matrix, other datatypes

Returns:
The maximum absolute difference of il and n2.

Time complexity: O(n), the number of elementsin the shorter vector.

| graph_vector _order — Calculate the order of the elements in
a vector.

int igraph_vector_order(const igraph_vector t* v,
const igraph_vector t *v2,
i graph_vector _t* res, igraph_real t nodes);

The smallest element will have order zero, the second smallest order one, €tc.

Arguments:

V: The original igraph_vector_t object.

v2: A secondary key, another igraph_vector_t object.

res: An initialized igraph_vector_t object, it will be resized to match the size of v. The result

of the computation will be stored here.

nodes: Hint, thelargest elementinv.

Returns:
Error code: | GRAPH_ENQVEM out of memory

Time complexity: O()

| graph_vector i s _nan — Check for each element if it is NaN.

int igraph_vector_is_nan(const igraph_vector_t *v, igraph_vector_bool t *is_nan

Arguments:
V! Theigraph_vector_t object to check.

i s_nan: Theresulting boolean vector indicating for each element whether it is NaN or not.

Returns:

Error code, | GRAPH_ENOVEMIf thereis not enough memory. Note that this function never returns
an error if the vector i s_nan will aready be large enough. Time complexity: O(n), the number
of elements.

I graph_vector _i s_any_nan — Check if any element is NaN.

Data structure library: vec-
tor, matrix, other datatypes

i graph_bool _t igraph_vector_is_any_nan(const igraph_vector_t *v);

Arguments:

v: Theigraph vector_t object to check.

Returns:
1if any element is NaN, O otherwise.

Time complexity: O(n), the number of elements.

Searching for elements

I graph_vect or _cont ai ns — Linear search in a vector.

i graph_bool _t igraph_vector_contai ns(const igraph_vector _t *v,
igraph_real t e);

Check whether the supplied element isincluded in the vector, by linear search.
Arguments:
v: Theinput vector.

e: Theelement to look for.

Returns:
TRUE if the element is found and FAL SE otherwise.

Time complexity: O(n), the length of the vector.

| graph_vector _search — Search from a given position

i graph_bool _t igraph_vector_search(const igraph_vector_t *v,
long int from igraph_real _t what,
I ong int *pos);

The supplied element what is searched in vector v, starting from element index f r om If found then
theindex of the first instance (after f r o) is stored in pos.

Arguments:

V! The input vector.

from Theindex to start searching from. No range checking is performed.
what: The element to find.

pos: If not NULL then the index of the found element is stored here.

65

Data structure library: vec-
tor, matrix, other datatypes

Returns:
Boolean, TRUE if the element was found, FAL SE otherwise.

Time complexity: O(m), the number of elements to search, the length of the vector minusthe f r om
argument.

| graph_vect or _bi nsear ch — Finds an element by binary
searching a sorted vector.

i graph_bool _t igraph_vector_binsearch(const igraph_vector_t *v,
i graph_real _t what, long int *pos);

It is assumed that the vector is sorted. If the specified element (what) is not in the vector, then the
position of where it should be inserted (to keep the vector sorted) is returned. If the vector contains
any NaN values, the returned value is undefined and pos may point to any position.

Arguments:
V! Theigraph_vector_t object.
what: The element to search for.

pos: Pointer to along int. Thisis set to the position of an instance of what in the vector if it is
present. If v does not contain what then pos is set to the position to which it should be
inserted (to keep the the vector sorted of course).

Returns:
Positive integer (true) if what isfound in the vector, zero (false) otherwise.

Time complexity: O(log(n)), n isthe number of elementsinv.

| graph_vector bi nsearch_slice —Finds an element by bina-
ry searching a sorted slice of a vector.

i graph_bool t igraph_vector_ binsearch_slice(const igraph_vector_t *v,
i graph_real t what, long int *pos,
long int start, long int end);

It is assumed that the indicated slice of the vector, from st art to end, is sorted. If the specified
element (what) is not in the slice of the vector, then the position of where it should be inserted (to
keep the vector sorted) isreturned. If the indicated slice contains any NaN values, the returned value
isundefined and pos may point to any position within the dlice.

Arguments:

V: Theigraph_vector_t object.

what : The element to search for.

pos: Pointer to along int. Thisis set to the position of an instance of what in the dice of the

vector if itis present. If v does not contain what then pos is set to the position to which
it should be inserted (to keep the the vector sorted).

66

Data structure library: vec-
tor, matrix, other datatypes

start: Thedtart position of the diceto search (inclusive).

end: The end position of the slice to search (exclusive).

Returns:
Positive integer (true) if what isfound in the vector, zero (false) otherwise.

Time complexity: O(log(n)), n isthe number of elementsinthedliceof v,i.e.end -start.

| graph_vect or _bi nsear ch2 — Binary search, without return-
ing the index.

i graph_bool t igraph_vector binsearch2(const igraph_vector t *v,
i graph_real t what);

It is assumed that the vector is sorted.

Arguments:

V! Theigraph_vector_t object.

what : Theelement to search for.

Returns:
Positive integer (true) if what isfound in the vector, zero (false) otherwise.

Time complexity: O(log(n)), n isthe number of elementsinv.
Resizing operations

I graph_vector cl ear — Removes all elements from a vector.

voi d igraph_vector_clear(igraph_vector_t* v);

Thisfunction simply sets the size of the vector to zero, it does not free any allocated memory. For that
you havetocal i graph_vector _destroy().

Arguments:

v: Thevector object.

Time complexity: O(1).

| graph_vector _reserve — Reserves memory for a vector.

i nt igraph_vector_reserve(igraph_vector_t* v, long int size);

67

Data structure library: vec-
tor, matrix, other datatypes

igraph vectors are flexible, they can grow and shrink. Growing however occasionally needs the data
in the vector to be copied. In order to avoid this, you can call this function to reserve space for future
growth of the vector.

Note that this function does not change the size of the vector. Let us see a small example to clarify
things: if you reserve space for 100 elements and the size of your vector was (and till is) 60, then you
can surely add additional 40 elements to your vector before it will be copied.

Arguments:
V: The vector object.

si ze: Thenew allocated size of the vector.

Returns:
Error code: | GRAPH_ENQVEMIf there is not enough memory.

Time complexity: operating system dependent, should be around O(n), n is the new allocated size of
the vector.

| graph_vector _resi ze — Resize the vector.

int igraph_vector _resize(igraph_vector t* v, long int newsize);

Note that this function does not free any memory, just sets the size of the vector to the given one. It
can on the other hand allocate more memory if the new size is larger than the previous one. In this
case the newly appeared elements in the vector are not set to zero, they are uninitialized.

Arguments:
V! The vector object

newsi ze: Thenew size of the vector.

Returns:

Error code, | GRAPH_ENOVEMIf thereis not enough memory. Note that this function never returns
an error if the vector is made smaller.

See also:

i graph_vector_reserve() for alocating memory for future extensions of a vector.
i graph_vector_resize_m n() for dealocating the unnneded memory for a vector.

Time complexity: O(1) if the new size is smaller, operating system dependent if it is larger. In the
latter case it is usually around O(n), nisthe new size of the vector.

I graph_vector _resize_m n— Deallocate the unused memory
of a vector.

int igraph_vector_resize_mn(igraph_vector_t*v);

68

Data structure library: vec-
tor, matrix, other datatypes

Note that this function involves additional memory allocation and may result an out-of-memory error.
Arguments:

v: Pointer to aninitialized vector.

Returns:

Error code.

See also:
i graph_vector _resize(),igraph_vector_reserve().
Time complexity: operating system dependent.

I graph_vect or _push_back — Appends one element to a vec-
tor.

int igraph_vector_push_back(igraph_vector t* v, igraph_ real t e);
This function resizes the vector to be one element longer and sets the very last element in the vector
toe.

Arguments:

v: Thevector object.

e: Theeement to append to the vector.

Returns:
Error code: | GRAPH_ENOMEM not enough memory.

Time complexity: operating system dependent. What is important is that a sequence of n subsequent
calls to this function has time complexity O(n), even if there hadn't been any space reserved for the
new elements by i gr aph_vect or _reserve(). Thisisimplemented by atrick similar to the C
++ vector class: each time more memory is allocated for a vector, the size of the additionally allocat-
ed memory is the same as the vector's current length. (We assume here that the time complexity of
memory allocation is at most linear.)

| graph_vector pop_back — Removes and returns the last ele-
ment of a vector.

i graph_real t igraph_vector pop_back(igraph_vector t* v);

Itisan error to call this function with an empty vector.
Arguments:

v: Thevector object.

69

Data structure library: vec-
tor, matrix, other datatypes

Returns:
The removed |last element.
Time complexity: O(1).

| graph_vector _insert —Inserts asingle element into a vec-
tor.

int igraph_vector _insert(igraph_vector_t *v, long int pos,
i graph_real t value);

Note that this function does not do range checking. Insertion will shift the elements from the position
given to the end of the vector one position to the right, and the new element will be inserted in the
empty space created at the given position. The size of the vector will increase by one.

Arguments:
V: The vector object.
pos: The position where the new element is to be inserted.

val ue: Thenew element to be inserted.

| graph_vector_renove — Removes a single element from a
vector.

voi d igraph_vector_renove(igraph_vector_t *v, long int elen);
Note that this function does not do range checking.

Arguments:

V: The vector object.

el em The position of the element to remove.

Time complexity: O(n-elem), n is the number of elementsin the vector.

I graph_vector _renove_secti on — Deletes a section from a
vector.

voi d igraph_vector_renove_section(igraph_vector_t *v,

long int from long int to);
Note that thisfunction does not do range checking. Theresult isundefined if you supply invalid limits.
Arguments:

V: The vector object.

70

Data structure library: vec-
tor, matrix, other datatypes

from Theposition of the first element to remove.
to: The position of the first element not to remove.

Time complexity: O(n-from), nisthe number of elementsin the vector.
Sorting

| graph_vector _sort — Sorts the elements of the vector into
ascending order.

voi d igraph_vector_sort(igraph_vector _t *v);

If the vector contains any NaN values, the resulting ordering of NaN values is undefined and may
appear anywhere in the vector.

Arguments:

v: Pointer to aninitialized vector object.

Time complexity: O(n log n) for n elements.

| graph_vector _reverse_sort — Sorts the elements of the
vector into descending order.

voi d igraph_vector_reverse_sort(igraph_vector_t *v);

If the vector contains any NaN values, the resulting ordering of NaN values is undefined and may
appear anywhere in the vector.

Arguments:

v: Pointer to an initialized vector object.

Time complexity: O(n log n) for n elements.

Set operations on sorted vectors

I graph_vector _intersect_sorted — Calculates the intersec-
tion of two sorted vectors

int igraph_vector _intersect_sorted(const igraph _vector_t *vi,
const igraph_vector_t *v2, igraph_vector_t *result);

The elements that are contained in both vectors are stored in the result vector. All three vectors must
beinitialized.

Instead of the naive intersection which takes O(n), this function uses the set intersection method of
Ricardo Baeza-Y ates, which is more efficient when one of the vectorsis significantly smaller than the
other, and gives similar performance on average when the two vectors are equal.

71

Data structure library: vec-
tor, matrix, other datatypes

Thealgorithm keepsthe multiplicities of the elements: if an element appearskl timesinthefirst vector
and k2 times in the second, the result will include that element min(k1, k2) times.

Reference: Baeza-Yates R: A fast set intersection algorithm for sorted sequences. In: Lecture
Notes in Computer Science, vol. 3109/2004, pp. 400--408, 2004. Springer Berlin/Heidelberg. ISBN:
978-3-540-22341-2.

Arguments:
vl: thefirst vector
v2: the second vector

resul t: theresult vector, which will also be sorted.

Time complexity: O(m log(n)) where mis the size of the smaller vector and n isthe size of the larger
one.

| graph_vector _difference_sorted— Calculates the differ-
ence between two sorted vectors (considered as sets)

int igraph_vector_difference_sorted(const igraph_vector_t *vli,
const igraph_vector_t *v2, igraph_vector_t *result);

The elements that are contained in only the first vector but not the second are stored in the result
vector. All three vectors must be initialized.

Arguments:
vl: thefirst vector
v2: the second vector

resul t: theresult vector

Pointer vectors (igraph_vector_ptr t)

Theigraph_vector_ptr_t datatypeisvery similartothei gr aph_vect or _t type, but it storesgener-
ic pointers instead of real numbers.

Thistype has the same space complexity asi gr aph_vect or _t , and most implemented operations
work the ssmeway asfori gr aph_vector _t.

Thistype ismostly used to pass to or receive from a set of graphs to some igraph functions, such as
i gr aph_decompose() , which decomposes a graph to connected components.

The same VECTOR macro used for ordinary vectors can be used for pointer vectors as well, please
note that a typeless generic pointer will be provided by this macro and you may need to cast it to a
specific pointer before starting to work with it.

Pointer vectors may have an associated item destructor function which takes a pointer and returns
nothing. The item destructor will be called on each item in the pointer vector when it is destroyed by
i graph_vector _ptr_destroy() origraph _vector ptr_destroy_all (), or when
itselementsarefreedbyi graph_vector _ptr_free_al | (). Notethat the semanticsof anitem
destructor does not coincide with C++ destructors; for instance, when a pointer vector isresized to a
smaller size, the extraitems will not be destroyed automatically! Nevertheless, item destructors may
become handy in many cases; for instance, avector of graphsgenerated by i gr aph_deconpose()

72

Data structure library: vec-
tor, matrix, other datatypes

can be destroyed with asingle call toi gr aph_vector _ptr_destroy_al | () if theitem de-
structor issettoi gr aph_destroy().

| graph_vector _ptr_init — Initialize a pointer vector (con-
structor).

int igraph_vector_ptr_init(igraph_vector_ptr_t* v, int long size);
Thisisthe constructor of the pointer vector datatype. All pointer vectors constructed this way should
be destroyed viacallingi gr aph_vect or _ptr_destroy().

Arguments:

V: Pointer to an uninitialized igraph_vector_ptr_t object, to be created.

si ze: Integer, the size of the pointer vector.

Returns:
Error code: | GRAPH_ENOMEMIf out of memory

Time complexity: operating system dependent, the amount of “time” required to alocate si ze ele-
ments.

| graph_vector _ptr_copy — Copy a pointer vector (construc-
tor).

int igraph_vector_ptr_copy(igraph_vector ptr_t *to, const igraph_vector ptr_t *
This function creates a pointer vector by copying another one. Thisis shallow copy, only the pointers
in the vector will be copied.

It is potentially dangerous to copy a pointer vector with an associated item destructor. The copied
vector will inherit the item destructor, which may cause problems when both vectors are destroyed as
theitems might get destroyed twice. Make sure you know what you are doing when copying a pointer
vector with an item destructor, or unset the item destructor on one of the vectors later.

Arguments:

t o: Pointer to an uninitialized pointer vector object.

from A pointer vector object.

Returns:
Error code: | GRAPH_ENOMEMIf out of memory

Time complexity: O(n) if allocating memory for n elements can be donein O(n) time.

| graph_vector ptr_destroy — Destroys a pointer vector.

73

Data structure library: vec-
tor, matrix, other datatypes

voi d igraph_vector_ptr_destroy(igraph_vector_ptr_t* v);

The destructor for pointer vectors.

Arguments:

v: Pointer to the pointer vector to destroy.

Time complexity: operating system dependent, the “time” required to deallocate O(n) bytes, n isthe

number of elements alocated for the pointer vector (not necessarily the number of elements in the
vector).

| graph_vector _ptr_free_all — Frees all the elements of a
pointer vector.

void igraph_vector_ptr_free_all (igraph_vector_ptr_t* v);

If an item destructor is set for this pointer vector, this function will first call the destructor on all
elements of the vector and then free al the elementsusing i gr aph_f r ee() . If an item destructor
is not set, the elements will simply be freed.

Arguments:
v: Pointer to the pointer vector whose elements will be freed.

Time complexity: operating system dependent, the “time” required to call the destructor n times and
then deallocate O(n) pointers, each pointing to a memory area of arbitrary size. n is the number of
elementsin the pointer vector.

| graph_vector _ptr_destroy_all — Frees all the elements
and destroys the pointer vector.

void igraph_vector ptr_destroy_all (i graph_vector ptr_t* v);

Thisfunctionisequivalenttoi gr aph_vector _ptr_free_al |l () followedbyi graph_vec-
tor_ptr_destroy().

Arguments:
v: Pointer to the pointer vector to destroy.

Time complexity: operating system dependent, the “time” required to deallocate O(n) pointers, each
pointing to amemory area of arbitrary size, plusthe “time” required to deallocate O(n) bytes, n being
the number of elements allocated for the pointer vector (not necessarily the number of elementsin
the vector).

| graph_vector ptr_size — Gives the number of elements in
the pointer vector.

long int igraph_vector ptr_size(const igraph_vector _ptr t* v);

74

Data structure library: vec-
tor, matrix, other datatypes

Arguments:

v: The pointer vector object.

Returns:
The size of the abject, i.e. the number of pointers stored.
Time complexity: O(1).

| graph_vector ptr_cl ear — Removes all elements from a
pointer vector.

voi d igraph_vector_ptr_clear(igraph_vector_ptr_t* v);

Thisfunction resizesapointer to vector to zero length. Notethat the pointed objectsare not deallocated,
you should call i graph_free() on them, or make sure that their alocated memory is freed in
some other way, you'll get memory leaks otherwise. If you have set up an item destructor earlier, the
destructor will be called on every element.

Note that the current implementation of this function does not deallocate the memory required for
storing the pointers, so making a pointer vector smaller thisway does not give back any memory. This
behavior might change in the future.
Arguments:
v: The pointer vector to clear.
Time complexity: O(1).
| graph_vector _ptr_push_back — Appends an element to the
back of a pointer vector.

int igraph_vector_ptr_push_back(i graph_vector_ptr_t* v, void* e);

Arguments:
v: The pointer vector.

e: Thenew element to include in the pointer vector.

Returns:

Error code.

See also:
igraph_vector_push_back() for the corresponding operation of the ordinary vector type.

Time complexity: O(1) or O(n), nisthe number of elementsin the vector. The pointer vector imple-
mentation ensures that n subsequent push_back operations need O(n) time to complete.

75

Data structure library: vec-
tor, matrix, other datatypes

I graph_vector _ptr_insert — Inserts a single element into a
pointer vector.

int igraph_vector_ptr_insert(igraph_vector ptr_t* v, long int pos, void* e);

Note that this function does not do range checking. Insertion will shift the elements from the position
given to the end of the vector one position to the right, and the new element will be inserted in the
empty space created at the given position. The size of the vector will increase by one.

Arguments:
V! The pointer vector object.
pos: The position where the new element isinserted.

e: The inserted element

| graph_vector ptr_e — Access an element of a pointer vector.

void *igraph_vector _ptr_e(const igraph_vector _ptr_t* v, long int pos);

Arguments:
V. Pointer to a pointer vector.

pos: Theindex of the pointer to return.

Returns:
The pointer at pos position.
Time complexity: O(1).

| graph_vector _ptr_set — Assign to an element of a pointer
vector.

voi d igraph_vector_ptr_set(igraph_vector_ptr_t* v, long int pos, void* value);

Arguments:
V! Pointer to a pointer vector.
pos: Theindex of the pointer to update.

val ue: Thenew pointer to set in the vector.

Time complexity: O(1).

| graph_vector _ptr_resi ze — Resizes a pointer vector.

76

Data structure library: vec-
tor, matrix, other datatypes

int igraph_vector_ptr_resize(igraph_vector_ptr_t* v, long int newsize);
Note that if a vector is made smaller the pointed object are not deallocated by this function and the
item destructor is not called on the extra elements.

Arguments:

V! A pointer vector.

newsi ze: Thenew size of the pointer vector.

Returns:
Error code.

Time complexity: O(1) if the vector if made smaller. Operating system dependent otherwise, the
amount of “time”’ needed to alocate the memory for the vector elements.

| graph_vector ptr_sort — Sorts the pointer vector based on
an external comparison function.

voi d igraph_vector_ptr_sort(igraph_vector_ptr_t *v, int (*conpar)(const void*,

Sometimesiit is necessary to sort the pointersin the vector based on the property of the element being
referenced by the pointer. This function allows us to sort the vector based on an arbitrary external
comparison function which accepts two void * pointers p1 and p2 and returns an integer less than,
equal to or greater than zero if the first argument is considered to be respectively less than, equal
to, or greater than the second. p1 and p2 will point to the pointer in the vector, so they have to be
double-dereferenced if one wants to get access to the underlying object the address of which is stored
inv.

Arguments:
V: The pointer vector to be sorted.

conpar: A gsort-compatible comparison function. It must take pointers to the elements of the
pointer vector. For example, if the pointer vector contains i gr aph_vector _t *
pointers, then the comparison function must interpret its arguments asi gr aph_vec-
tor _t **,

Example 7.4. Fileexanpl es/ si npl e/ i graph_vector _ptr_sort.c

| graph_vector ptr_get item destructor — Gets the cur-
rent item destructor for this pointer vector.

igraph finally func t* igraph_vector _ptr_get_itemdestructor(const igraph_vecto
The item destructor is a function which will be called on every non-null pointer stored in this vector

when i gr aph_vector _ptr_destroy(), igraph_vector_ptr_destroy_all() or i gr aph_vec-
tor_ptr_free_all () iscaled.

Returns:

77

Data structure library: vec-
tor, matrix, other datatypes

The current item destructor.
Time complexity: O(1).

| graph_vector _ptr_set item destructor — Sets the item
destructor for this pointer vector.

igraph_finally func_t* igraph_vector_ptr_set_item destructor(
i graph_vector_ptr_t *v, igraph_finally_func_t *func);

The item destructor is a function which will be called on every non-null pointer stored in this vector
when i graph_vector _ptr_destroy(), igraph_vector_ptr_destroy al() or i gr aph_vec-
tor_ptr_free_all () iscaled.
Returns:
The old item destructor.
Time complexity: O(1).
| GRAPH VECTOR _PTR_SET | TEM DESTRUCTOR — Sets the item
destructor for this pointer vector (macro version).

#define | GRAPH_VECTOR PTR_SET_| TEM DESTRUCTOR(v, func)

This macro is expanded to i gr aph_vector _ptr_set item destructor (), theonly dif-
ferenceis that the second argument is automaticaly casttoani graph_fi nal | y_func_t*. The
cast is necessary in most cases as the destructor functions we use (such asi gr aph_vect or _de-

st roy()) take a pointer to some concrete igraph data type, whilei graph_finally func_t
expectsvoi d*

Matrices

About igraph_matrix_t objects

Thistypeisjust an interface to igraph_vector t.

Theigraph_matrix_t type usually stores n elementsin O(n) space, but not always. See the documen-
tation of the vector type.

Matrix constructors and destructors

I graph_matri x_init — Initializes a matrix.

int igraph_matrix_init(igraph_matrix_t *m long int nrow, long int ncol);

Every matrix needsto beinitialized before using it. Thisisdone by calling thisfunction. A matrix has
to be destroyed if it is not needed any more; seei gr aph_matri x_destroy().

Arguments:

78

Data structure library: vec-
tor, matrix, other datatypes

m Pointer to a not yet initialized matrix object to be initialized.
nrow. Thenumber of rowsin the matrix.

ncol : The number of columnsin the matrix.

Returns:
Error code.

Time complexity: usualy O(n), nisthe number of elementsin the matrix.

I graph_matri x_copy — Copies a matrix.

int igraph_matrix_copy(igraph_matrix_t *to, const igraph_matrix_t *from;

Creates amatrix object by copying from an existing matrix.
Arguments:
t o: Pointer to an uninitialized matrix object.

from Theinitialized matrix object to copy.

Returns:
Error code, | GRAPH_ENOVEMIf there isn't enough memory to allocate the new matrix.

Time complexity: O(n), the number of elementsin the matrix.

| graph_matri x_destroy — Destroys a matrix object.

void igraph_matrix_destroy(igraph matrix t *m;

This function frees all the memory allocated for a matrix object. The destroyed object needs to be
reinitialized before using it again.

Arguments:
m The matrix to destroy.

Time complexity: operating system dependent.
Initializing elements

I graph_matri x_nul | — Sets all elements in a matrix to zero.

void igraph_matrix_null (igraph_matrix t *m;

Arguments:

79

Data structure library: vec-
tor, matrix, other datatypes

m Pointer to an initialized matrix object.

Time complexity: O(n), nisthe number of elementsin the matrix.

i graph_matrix_fill — Fill with an element.

void igraph_matrix _fill(igraph_matrix_ t *m igraph_real _t e);
Set the matrix to a constant matrix.

Arguments:

m Theinput matrix.

e: Theelement to set.

Time complexity: O(mn), the number of elements.
Copying matrices

I graph_matri x_copy_t o — Copies a matrix to aregular C array.

void igraph_matrix_copy_to(const igraph matrix t *m igraph_real t *to);
The matrix is copied columnwise, asthisisthe format most programs and languages use. The C array
should be of sufficient size; there are (of course) no range checks.

Arguments:

m Pointer to an initialized matrix object.

to: Pointer to aC array; the place to copy the datato.

Returns:
Error code.

Time complexity: O(n), nisthe number of elementsin the matrix.

i graph_matri x_updat e — Update from another matrix.

int igraph_matrix_update(igraph_matrix_t *to,
const igraph_matrix_t *from;

This function replicates f r omin the matrix t 0. Note that t o must be already initialized.
Arguments:
t o: The result matrix.

from Thematrix to replicate; it is left unchanged.

Returns:

80

Data structure library: vec-
tor, matrix, other datatypes

Error code.

Time complexity: O(mn), the number of elements.

I graph_matri x_swap — Swap two matrices.

int igraph_matrix_swap(igraph_matrix_t *ml, igraph_matrix_t *nR);
The contents of the two matrices will be swapped. They must have the same dimensions.
Arguments:

nml: Thefirst matrix.

nm2: The second matrix.

Returns:
Error code.

Time complexity: O(mn), the number of elementsin the matrices.

Accessing elements of a matrix

MATRI X — Accessing an element of a matrix.

#define MATRIX(mi,j)

Note that there are no range checks right now. This functionality might be redefined as a proper func-
tion later.

Arguments:

m The matrix object.

i Theindex of the row, starting with zero.

j : Theindex of the column, starting with zero.

Time complexity: O(1).

I graph_mat ri x_e — Extract an element from a matrix.

i graph_real _t igraph_matrix_e(const igraph_matrix_t *m
long int row, long int col);

Usethisif you need afunction for some reason and cannot use the MATRI X macro. Note that no range
checking is performed.

Arguments:
m The input matrix.

row. Therow index.

81

Data structure library: vec-
tor, matrix, other datatypes

col : Thecolumn index.

Returns:
The element in the given row and column.

Time complexity: O(1).

I graph_matri x_e_ptr — Pointer to an element of a matrix.

igraph_real t* igraph_matrix_e ptr(const igraph_matrix_t *m
long int row, long int col);

The function returns a pointer to an element. No range checking is performed.
Arguments:

m The input matrix.

row. Therow index.

col : The column index.

Returns:
Pointer to the element in the given row and column.

Time complexity: O(1).

I graph_matri x_set — Set an element.

void igraph_matrix_set(igraph_matrix_t* m long int row, long int col,
i graph_real _t val ue);

Set an element of amatrix. No range checking is performed.

Arguments:

m The input matrix.
r ow. The row index.
col : The column index.

val ue: Thenew value of the el ement.

Time complexity: O(1).
Operations on rows and columns

I graph_matri x_get row— Extract arow.

int igraph_matrix_get_row(const igraph_matrix t *m

82

Data structure library: vec-
tor, matrix, other datatypes

i graph_vector_t *res, long int index);

Extract arow from amatrix and return it as a vector.

Arguments:
m The input matrix.
res: Pointer to an initialized vector; it will be resized if needed.

i ndex: Theindex of the row to select.

Returns:
Error code.

Time complexity: O(n), the number of columnsin the matrix.

I graph_matri x_get col — Select a column.

int igraph_matrix_get _col (const igraph natrix t *m
i graph_vector _t *res,
[ong int index);

Extract a column of amatrix and return it as a vector.

Arguments:
m The input matrix.
res: Theresult will westored in thisvector. It should beinitialized and will beresized asneeded.

i ndex: Theindex of the column to select.

Returns:
Error code.

Time complexity: O(n), the number of rowsin the matrix.

I graph_matri x_set row— Set arow from a vector.

int igraph_matrix_set_row(igraph_matrix_t *m
const igraph_vector_t *v, long int index);

Sets the elements of a row with the given vector. This has the effect of setting row i ndex to have
the elements in the vector v. The length of the vector and the number of columns in the matrix must
match, otherwise an error istriggered.

Arguments:
m The input matrix.
V! The vector containing the new elements of the row.

i ndex: Index of the row to set.

83

Data structure library: vec-
tor, matrix, other datatypes

Returns:
Error code.

Time complexity: O(n), the number of columnsin the matrix.

I graph_matri x_set col — Set acolumn from a vector.

int igraph_matrix_set_col (igraph_matrix t *m
const igraph_vector_t *v, long int index);

Setsthe elements of acolumn with the given vector. In effect, columni ndex will be set with elements
from thevector v. Thelength of the vector and the number of rowsin the matrix must match, otherwise
an error istriggered.

Arguments:
m The input matrix.
V. The vector containing the new elements of the column.

i ndex: Index of the column to set.

Returns:
Error code.

Time complexity: O(m), the number of rows in the matrix.

I graph_matri x_swap_r ows — Swap two rows.

int igraph_matrix_swap_rows(igraph_matrix_t *m
long int i, long int j);

Swap two rows in the matrix.
Arguments:

m Theinput matrix.

i Theindex of thefirst row.

j : Theindex of the second row.

Returns:
Error code.

Time complexity: O(n), the number of columns.

I graph_matri x_swap_col s — Swap two columns.

int igraph_matrix_swap_col s(igraph_matrix t *m
long int i, long int j);

Data structure library: vec-
tor, matrix, other datatypes

Swap two columnsin the matrix.
Arguments:

m Theinput matrix.

i : Theindex of thefirst column.

j i Theindex of the second column.

Returns:
Error code.

Time complexity: O(m), the number of rows.

I graph_matri x_sel ect _rows — Select some rows of a matrix.

int igraph_matrix_select _rows(const igraph _matrix_t *m
igraph_matrix_ t *res,
const igraph_vector_t *rows);

Thisfunction selects some rows of amatrix and returnsthem in anew matrix. The result matrix should
be initialized before calling the function.

Arguments:
m The input matrix.
res: The result matrix. It should be initialized and will be resized as needed.
rows: Vector; it containstherow indices (starting with zero) to extract. Note that no range checking
is performed.
Returns:
Error code.

Time complexity: O(nm), nisthe number of rows, m the number of columns of the result matrix.

I graph_matri x_sel ect _col s — Select some columns of a ma-
trix.

int igraph_matrix_sel ect_col s(const igraph_matrix_t *m
igraph_matrix_t *res,
const igraph_vector_t *cols);

This function selects some columns of a matrix and returns them in a new matrix. The result matrix
should be initialized before calling the function.

Arguments:
m The input matrix.

res: The result matrix. It should beinitialized and will be resized as needed.

85

Data structure library: vec-
tor, matrix, other datatypes

col s: Vector; it contains the column indices (starting with zero) to extract. Note that no range
checking is performed.
Returns:
Error code.

Time complexity: O(nm), nisthe number of rows, m the number of columns of the result matrix.

I graph_matri x_sel ect _rows col s — Select some rows and
columns of a matrix.

int igraph_matrix_select_rows_col s(const igraph_matrix_t *m
igraph_matrix_t *res,
const igraph_vector_t *rows,
const igraph_vector_t *cols);

Thisfunction selects some rows and columns of a matrix and returns them in anew matrix. The result
matrix should be initialized before calling the function.

Arguments:
m The input matrix.
res: The result matrix. It should beinitialized and will be resized as needed.

rows: Vector;itcontainstherow indices(starting with zero) to extract. Notethat no range checking
is performed.

col s: Vector; it contains the column indices (starting with zero) to extract. Note that no range
checking is performed.

Returns:
Error code.

Time complexity: O(nm), nisthe number of rows, m the number of columns of the result matrix.

Matrix operations

I graph_matri x_add _const ant — Add a constant to every ele-
ment.

void igraph_matrix_add _constant (igraph_matrix_t *m igraph_real t plus);

Arguments:
m The input matrix.
pl ud: The constant to add.

Time complexity: O(mn), the number of elements.

86

Data structure library: vec-
tor, matrix, other datatypes

I graph_matri x_scal e — Multiplies each element of the matrix
by a constant.

voi d igraph_matrix_scal e(igraph_matrix_t *m igraph_real _t by);

Arguments:

m The matrix.
by: Theconstant.
Added in version 0.2.

Time complexity: O(n), the number of elementsin the matrix.

I graph_matri x_add — Add two matrices.

int igraph_matrix_add(igraph_matrix_t *ni,
const igraph_matrix_t *nR);

Add n? to ml, and store the result in L. The dimensions of the matrices must match.
Arguments:
ml: Thefirst matrix; the result will be stored here.

n2: The second matrix; it isleft unchanged.

Returns:
Error code.

Time complexity: O(mn), the number of elements.

| graph_matri x_sub — Difference of two matrices.

int igraph_matrix_sub(igraph_matrix_t *ni,
const igraph_matrix_t *nR);

Subtract N2 from il and store the result in mil. The dimensions of the two matrices must match.
Arguments:
ml: Thefirst matrix; the result is stored here.

n2: Thesecond matrix; it is|eft unchanged.

Returns:
Error code.

Time complexity: O(mn), the number of elements.

87

Data structure library: vec-
tor, matrix, other datatypes

I graph_matrix_nul el enment s — Elementwise multiplication.

int igraph_matrix_rnul _el ements(igraph_matrix_t *ni,
const igraph_matrix_t *nR);

Multiply ml by n2 elementwise and store the result in nil. The dimensions of the two matrices must
match.

Arguments:
ml: Thefirst matrix; the result is stored here.

n2: The second matrix; it isleft unchanged.

Returns:
Error code.

Time complexity: O(mn), the number of elements.

I graph_matri x_div_el enent s — Elementwise division.

int igraph_matrix_div_elements(igraph_matrix_t *nmi,
const igraph_matrix_t *nR);

Divide mL by n? elementwise and store the result in mL. The dimensions of the two matrices must
match.

Arguments:
ml: Thedividend. Theresult is store here.

n2: Thedivisor. It isleft unchanged.

Returns:
Error code.

Time complexity: O(mn), the number of elements.

I graph_mat ri x_sum— Sum of elements.

i graph_real t igraph_matrix_sum(const igraph_matrix_t *nj;
Returns the sum of the elements of a matrix.
Arguments:

m Theinput matrix.

Returns:

The sum of the elements.

88

Data structure library: vec-
tor, matrix, other datatypes

Time complexity: O(mn), the number of elementsin the matrix.

I graph_matri x_prod — Product of the elements.

i graph_real _t igraph_matrix_prod(const igraph_matrix_t *nj;
Note this function can result in overflow easily, even for not too big matrices.
Arguments:

m Theinput matrix.

Returns:
The product of the elements.

Time complexity: O(mn), the number of elements.

I graph_matri x_r owsum— Rowwise sum.

int igraph_matrix_rowsun{const igraph_matrix_t *m
i graph_vector _t *res);

Calculate the sum of the elementsin each row.
Arguments:
m The input matrix.

res: Pointer to aninitialized vector; the result is stored here. It will be resized if necessary.

Returns:
Error code.

Time complexity: O(mn), the number of elementsin the matrix.

I graph_matri x_col sum— Columnwise sum.

int igraph_matrix_col sun{const igraph_matrix_t *m
i graph_vector_t *res);

Calculate the sum of the elements in each column.
Arguments:
m The input matrix.

res: Pointerto an initialized vector; the result is stored here. It will beresized if necessary.

Returns:

Error code.

89

Data structure library: vec-
tor, matrix, other datatypes

Time complexity: O(mn), the number of elementsin the matrix.

I graph_matri x_transpose — Transpose a matrix.

int igraph_matrix_transpose(igraph_matrix_t *m;
Calculate the transpose of amatrix. Note that the function reallocates the memory used for the matrix.
Arguments:

m Theinput (and output) matrix.

Returns:
Error code.

Time complexity: O(mn), the number of elementsin the matrix.

Matrix comparisons

I graph_matrix_all e — Are all elements equal?

i graph_bool t igraph_matrix_all_e(const igraph _matrix t *I|hs,
const igraph_matrix_t *rhs);

Arguments:

[hs: Thefirst matrix.

rhs: Thesecond matrix.

Returns:

Positive integer (=true) if the elementsin the | hs are all equal to the corresponding elements in
r hs. Returns 0 (=false) if the dimensions of the matrices don't match.

Time complexity: O(nm), the size of the matrices.

I graph_matrix_all | — Are all elements less?

i graph_bool _t igraph_matrix_all_I(const igraph_matrix_t *Ihs,
const igraph_matrix_t *rhs);

Arguments:
| hs: Thefirst matrix.

rhs: Thesecond matrix.

Returns:

90

Data structure library: vec-
tor, matrix, other datatypes

Positive integer (=true) if the elementsin the | hs are al less than the corresponding elementsin
r hs. Returns 0 (=false) if the dimensions of the matrices don't match.

Time complexity: O(nm), the size of the matrices.

I graph_matrix_all _g— Are all elements greater?

i graph_bool _t igraph_matrix_all_g(const igraph_matrix_t *Ihs,
const igraph_matrix_t *rhs);

Arguments:

[hs: Thefirst matrix.

rhs: Thesecond matrix.

Returns:

Positive integer (=true) if the elementsin the | hs are al greater than the corresponding elements
inr hs. Returns 0 (=false) if the dimensions of the matrices don't match.

Time complexity: O(nm), the size of the matrices.

I graph_matrix_all | e— Are all elements less or equal?
i graph_bool _t
i graph_matrix_all _le(const igraph_matrix_t *I|hs,

const igraph_matrix_t *rhs);

Arguments:
I hs: Thefirst matrix.

rhs: Thesecond matrix.

Returns:

Positive integer (=true) if the elementsin the| hs are al less than or equa to the corresponding
dementsinr hs. Returns 0 (=false) if the dimensions of the matrices don't match.

Time complexity: O(nm), the size of the matrices.

i graph_matrix_all _ge — Are all elements greater or equal?

i graph_bool _t
i graph_matrix_all _ge(const igraph _matrix_ t *Ihs,
const igraph_matrix_t *rhs);

Arguments:

| hs: Thefirst matrix.

91

Data structure library: vec-
tor, matrix, other datatypes

rhs: Thesecond matrix.

Returns:

Positiveinteger (=true) if the elementsinthel hs areall greater than or equal to the corresponding
dementsinr hs. Returns 0 (=false) if the dimensions of the matrices don't match.

Time complexity: O(nm), the size of the matrices.

Combining matrices

I graph_matri x_r bi nd — Combine two matrices rowwise.

int igraph_matrix_rbind(igraph_matrix_t *to,
const igraph_matrix_t *from;

This function places the rows of f r ombelow the rows of t 0 and storestheresult int 0. The number
of columns in the two matrices must match.

Arguments:
to: The upper matrix; the result is also stored here.

from Thelower matrix. It isleft unchanged.

Returns:
Error code.

Time complexity: O(mn), the number of elementsin the newly created matrix.

I graph_mat ri x_cbi nd — Combine matrices columnwise.

int igraph_matrix_chind(igraph _matrix t *to,
const igraph_matrix_ t *from;

This function places the columns of f r omon the right of t 0, and storestheresultint o.
Arguments:
to: The left matrix; the result is stored here too.

from Theright matrix. It isleft unchanged.

Returns:
Error code.

Time complexity: O(mn), the number of elements on the new matrix.

Finding minimum and maximum

I graph_matri x_m n — Smallest element of a matrix.

92

Data structure library: vec-
tor, matrix, other datatypes

i graph_real _t igraph_matrix_m n(const igraph_matrix_t *nj;
The matrix must be non-empty.
Arguments:

m Theinput matrix.

Returns:
The smallest element of m or NaN if any element is NaN.

Time complexity: O(mn), the number of elementsin the matrix.

I graph_mat ri x_max — Largest element of a matrix.

i graph_real _t igraph_matrix_max(const igraph_matrix_t *nj;

If the matrix is empty, an arbitrary number is returned.
Arguments:

m The matrix object.

Returns:
The maximum element of m or NaN if any element is NaN.
Added in version 0.2.

Time complexity: O(mn), the number of elementsin the matrix.

I graph_matri x_whi ch_m n — Indices of the smallest element.

int igraph_matrix_which_m n(const igraph_matrix_t *m
long int *i, long int *j);

The matrix must be non-empty. If the smallest element is not unique, then the indices of thefirst such
element arereturned. If the matrix contains NaN values, theindices of thefirst NaN value arereturned.
Arguments:

m The matrix.

i : Pointer to alongint. The row index of the minimum is stored here.

j : Pointer to alongint. The column index of the minimum is stored here.

Returns:
Error code.

Time complexity: O(mn), the number of elements.

93

Data structure library: vec-
tor, matrix, other datatypes

I graph_matri x_whi ch_nmax — Indices of the largest element.

int igraph_matrix_which_nax(const igraph_matrix_t *m
long int *i, long int *j);

The matrix must be non-empty. If the largest element is not unique, then the indices of the first such
element arereturned. If the matrix contains NaN values, theindices of thefirst NaN value arereturned.
Arguments:

m The matrix.

i : Pointer to alongint. The row index of the maximum is stored here.

j : Pointer to alongint. The column index of the maximum is stored here.

Returns:
Error code.
Time complexity: O(mn), the number of elements.

I graph_mat ri x_m nmax — Minimum and maximum elements of
a matrix.

int igraph_matrix_m nmax(const igraph_matrix_t *m
igraph_real _t *min, igraph_real _t *nmax);

Handy if you want to have both the smallest and largest element of a matrix. The matrix is only
traversed once. The matrix must be non-empty. If a matrix contains at least one NaN, both m n and
max will be NaN.

Arguments:
m Theinput matrix. It must contain at least one element.
m n: Pointer to abase type variable. The minimum is stored here.

max: Pointer to a base type variable. The maximum is stored here.

Returns:
Error code.
Time complexity: O(mn), the number of elements.

I graph_matri x_whi ch_m nmax — Indices of the minimum and
maximum elements

int igraph_matrix_which_m nmax(const igraph matrix t *m
long int *imn, long int *jmn,
long int *imax, long int *jmax);

94

Data structure library: vec-
tor, matrix, other datatypes

Handy if you need the indices of the smallest and largest elements. The matrix istraversed only once.
The matrix must be non-empty. If the minimum or maximum is not unique, the index of the first
minimum or the first maximum is returned, respectively. If amatrix contains at least one NaN, both
whi ch_m n and whi ch_nax will point to the first NaN value.

Arguments:

m The input matrix.

i mn: Pointer to alongint, the row index of the minimum is stored here.

j min: Pointer to along int, the column index of the minimum is stored here.
i max: Pointer to along int, the row index of the maximum is stored here.

j max: Pointer to along int, the column index of the maximum is stored here.

Returns:
Error code.

Time complexity: O(mn), the number of elements.

Matrix properties

I graph_matri x_enpty — Check for an empty matrix.

i graph_bool _t igraph_matrix_enpty(const igraph_matrix_ t *nj;

It is possible to have a matrix with zero rows or zero columns, or even both. This functions checks
for these.

Arguments:

m Theinput matrix.

Returns:
Boolean, TRUE if the matrix contains zero elements, and FAL SE otherwise.

Time complexity: O(1).

I graph_matri x_isnull — Check for a null matrix.

i graph_bool _t igraph_matrix_isnull(const igraph_matrix_t *m;
Checks whether all elements are zero.
Arguments:

m Theinput matrix.

Returns:

95

Data structure library: vec-
tor, matrix, other datatypes

Boolean, TRUE is mcontains only zeros and FAL SE otherwise.

Time complexity: O(mn), the number of elements.

I graph_matri x_si ze — The number of elements in a matrix.

long int igraph_matrix_size(const igraph_matrix_ t *m;

Arguments:

m Pointer to an initialized matrix object.

Returns:
The size of the matrix.
Time complexity: O(1).

| graph_matri x_capaci ty — Returns the number of elements
allocated for a matrix.

long int igraph_matrix_capacity(const igraph matrix_ t *nj;

Note that this might be different from the size of the matrix (as queried by i gr aph_na-
trix_size(),and specifies how many elements the matrix can hold, without reallocation.

Arguments:

v: Pointer to the (previoudly initialized) matrix object to query.

Returns:

The allocated capacity.

See also:
i graph_matrix_size(),igraph_matrix_nrow(),igraph_matrix_ncol ().
Time complexity: O(1).

I graph_matri x_nrow— The number of rows in a matrix.

long int igraph_matrix_nrow(const igraph matrix t *m;

Arguments:

m Pointer to an initialized matrix object.

Returns:

96

Data structure library: vec-
tor, matrix, other datatypes

The number of rows in the matrix.

Time complexity: O(1).

I graph_matri x_ncol — The number of columns in a matrix.

long int igraph_matrix_ncol (const igraph_matrix_t *nj;

Arguments:

m Pointer to an initialized matrix object.

Returns:
The number of columnsin the matrix.

Time complexity: O(1).

I graph_matrix_is_symetri c — Check for symmetric matrix.

i graph_bool t igraph_matrix_is_symetric(const igraph matrix t *m;
A non-square matrix is not symmetric by definition.
Arguments:

m Theinput matrix.

Returns:
Boolean, TRUE if the matrix is square and symmetric, FALSE otherwise.
Time complexity: O(mn), the number of elements. O(1) for non-square matrices.

I graph_matri x_maxdi f f er ence — Maximum absolute differ-
ence between two matrices.

i graph_real _t igraph_matrix_naxdifference(const igraph_matrix_t *ni,
const igraph_matrix_t *nR);

Calculate the maximum absol ute difference of two matrices. Both matrices must be non-empty. If their
dimensions differ then a warning is given and the comparison is performed by vectors columnwise
from both matrices. The remaining elements in the larger vector are ignored.

Arguments:
ml: Thefirst matrix.

n2: The second matrix.

Returns:

97

Data structure library: vec-
tor, matrix, other datatypes

The element with the largest absolute valuein ml - n2.

Time complexity: O(mn), the elements in the smaller matrix.

Searching for elements

I graph_matri x_cont ai ns — Search for an element.

i graph_bool _t igraph_matrix_contains(const igraph_matrix_t *m
i graph_real t e);

Search for the given element in the matrix.
Arguments:
m Theinput matrix.

e: Theelement to search for.

Returns:
Boolean, TRUE if the matrix contains e, FALSE otherwise.

Time complexity: O(mn), the number of elements.

I graph_matri x_search — Search from a given position.

i graph_bool _t igraph_matrix_search(const igraph_matrix_t *m
long int from igraph_real _t what,
I ong int *pos,
long int *row, long int *col);

Search for an element in amatrix and start the search from the given position. The search is performed
columnwise.

Arguments:

m The input matrix.

from Theposition to search from, the positions are enumerated columnwise.
what : The element to search for.

pos: Pointer to along int. If the element is found, then thisis set to the position of its first ap-
pearance.

r ow. Pointer to along int. If the element isfound, then thisis set to its row index.

col : Pointer to along int. If the element isfound, then thisis set to its column index.

Returns:
Boolean, TRUE if the element is found, FAL SE otherwise.

Time complexity: O(mn), the number of elements.

98

Data structure library: vec-
tor, matrix, other datatypes

Resizing operations

| graph_matri X _resi ze — Resizes a matrix.

int igraph_matrix_resize(igraph_matrix_t *m long int nrow, long int ncol);

This function resizes a matrix by adding more elementsto it. The matrix contains arbitrary data after
resizingit. That is, after calling this function you cannot expect that element (i,j) in the matrix remains
the same as before.

Arguments:
m Pointer to an aready initialized matrix object.
nrow. Thenumber of rowsin the resized matrix.

ncol : The number of columnsin the resized matrix.

Returns:
Error code.

Time complexity: O(1) if the matrix gets smaller, usually O(n) if it gets larger, n is the number of
elementsin the resized matrix.

I graph_matri x_resize_m n— Deallocates unused memory for
a matrix.

int igraph_matrix_resize_mn(igraph_matrix_t *m;

Note that this function might fail if there is not enough memory available.

Also note, that this function leaves the matrix intact, i.e. it does not destroy any of the elements.
However, usually it involves copying the matrix in memory.

Arguments:

m Pointer to an initialized matrix.

Returns:

Error code.

See also:
i graph_matrix_resize().

Time complexity: operating system dependent.

I graph_matri x_add_rows — Adds rows to a matrix.

99

Data structure library: vec-
tor, matrix, other datatypes

int igraph_matrix_add _rows(igraph_matrix_t *m long int n);

Arguments:
m The matrix object.

n: Thenumber of rowsto add.

Returns:
Error code, | GRAPH_ENOVEMIf there isn't enough memory for the operation.

Time complexity: linear with the number of elements of the new, resized matrix.

I graph_matri x_add _col s — Adds columns to a matrix.

int igraph_matrix_add col s(igraph_matrix t *m long int n);

Arguments:
m The matrix object.

n: Thenumber of columnsto add.

Returns:
Error code, | GRAPH_ENOVEMIf there is hot enough memory to perform the operation.

Time complexity: linear with the number of elements of the new, resized matrix.

I graph_matri x_renove_r ow— Remove a row.

int igraph_matrix_renove_row(igraph_matrix_t *m long int row);
A row is removed from the matrix.

Arguments:

m The input matrix.

row. Theindex of the row to remove.

Returns:
Error code.

Time complexity: O(mn), the number of elementsin the matrix.

I graph_matri x_renove_col — Removes a column from a ma-
trix.

100

Data structure library: vec-
tor, matrix, other datatypes

int igraph_matrix_renove_col (igraph_matrix_t *m long int col);

Arguments:
m The matrix object.

col : The column to remove.

Returns:
Error code, always returns with success.

Time complexity: linear with the number of elements of the new, resized matrix.

Sparse matrices

About igraph_spmatrix_t objects

The igraph_spmatrix_t type stores a sparse matrix with the assumption that the number of nonzero
elements in the matrix scales linearly with the row or column count of the matrix (so most of the
elements are zero). Of course it can store an arbitrary real matrix, but if most of the elements are
nonzero, one should use igraph_matrix_t instead.

The elements are stored in column compressed format, so the elements in the same column are stored
adjacent in the computer's memory. The storage requirement for a sparse matrix is O(n) where n is
the number of nonzero elements. Actually it can be a bit larger, see the documentation of the vector
type for an explanation.

Sparse matrix constructors and destructors.

I graph_spmatri x_i nit — Initializes a sparse matrix.

int igraph_spmatrix_init(igraph_spmatrix t *m long int nrow, |long int ncol);
Every sparse matrix needs to be initialized before using it, this is done by calling this function. A

matrix has to be destroyed if it is not needed any more, seei gr aph_spratri x_destroy().

Arguments:

m Pointer to a not yet initialized sparse matrix object to beinitialized.

nrow. Thenumber of rowsin the matrix.

ncol : The number of columnsin the matrix.

Returns:
Error code.

Time complexity: operating system dependent.

I graph_spmatri x_copy — Copies a sparse matrix.

101

Data structure library: vec-
tor, matrix, other datatypes

int igraph_spmatrix_copy(igraph_spmatrix_t *to, const igraph_spmatrix_t *from;

Creates a sparse matrix object by copying another one.
Arguments:
to: Pointer to an uninitialized sparse matrix object.

from Theinitialized sparse matrix object to copy.

Returns:
Error code, | GRAPH_ENQOVEMIf there isn't enough memory to allocate the new sparse matrix.

Time complexity: O(n), the number of elements in the matrix.

| graph_spmatri x_destroy — Destroys a sparse matrix object.

void igraph_spmatrix_destroy(igraph_spmatrix_t *m;

This function frees all the memory alocated for a sparse matrix object. The destroyed object needs
to be reinitialized before using it again.

Arguments:

m The matrix to destroy.

Time complexity: operating system dependent.
Accessing elements of a sparse matrix

| graph_spmatri x_e — Accessing an element of a sparse ma-
trix.

i graph_real t igraph_spnatrix_e(const igraph_spmatrix_t *m
long int row, long int col);

Note that there are no range checks right now.
Arguments:

m The matrix object.

row. Theindex of the row, starting with zero.
col : Theindex of the column, starting with zero.

Time complexity: O(log n), where n is the number of nonzero elements in the requested column.

| graph_spmatri x_set — Setting an element of a sparse matrix.

102

Data structure library: vec-
tor, matrix, other datatypes

int igraph_spmatrix_set(igraph_spmatrix_t *m long int row, long int col,
i graph_real _t val ue);

Note that there are no range checks right now.

Arguments:

m The matrix object.

r ow. Theindex of the row, starting with zero.
col : Theindex of the column, starting with zero.

val ue: Thenew value.
Time complexity: O(log n), where n is the number of nonzero elementsin the requested column.

I graph_spmatri x_add_e — Adding areal value to an element of
a sparse matrix.

int igraph_spmatrix_add_e(igraph_spmatrix_t *m long int row, long int col,
i graph_real _t val ue);

Note that there are no range checks right now. This isimplemented to avoid double lookup of a giv-
en element in the matrix by using i gr aph_spnmatri x_e() andi graph_spmatri x_set ()
consecutively.

Arguments:

m The matrix object.

r ow. Theindex of the row, starting with zero.

col : Theindex of the column, starting with zero.

val ue: Thevaueto add.

Time complexity: O(log n), where n is the number of nonzero el ements in the requested column.

Iterating over the non-zero elements of a sparse matrix

The igraph_spmatrix_iter_t type represents an iterator that can be used to step over the non-zero el-
ements of a sparse matrix in columnwise order efficiently. In general, you shouldn't modify the ele-
ments of the matrix while iterating over it; doing so will probably invalidate the iterator, but there are
no checksto prevent you from doing this.

To access the row index of the current element of theiterator, useitsri field. Similarly, theci field
stores the column index of the current element and the val ue field stores the value of the el ement.

| graph_spmatrix_iter_create — Creates a sparse matrix iter-
ator corresponding to the given matrix.

int igraph_spmatrix iter _create(igraph_spmatrix_iter_t *mit, const igraph_spnat

Arguments:

103

Data structure library: vec-
tor, matrix, other datatypes

mt: pointer to the matrix iterator being initialized

m pointer to the matrix we will be iterating over

Returns:
Error code. The current implementation is always successful.
Time complexity: O(1).

I graph_spmatri x_iter_reset — Resets a sparse matrix itera-
tor.

int igraph_spmatrix_iter_reset(igraph_spmatrix_iter_t *mt);

After resetting, the iterator will point to the first nonzero element (if any).
Arguments:

mt: pointer to the matrix iterator being reset

Returns:
Error code. The current implementation is always successful.
Time complexity: O(1).

I graph_spmatrix_iter_next — Moves a sparse matrix iterator
to the next nonzero element.

int igraph_spmatrix_iter_next(igraph_spmatrix_ iter t *mt);

Y ou should call thisfunction only if i gr aph_spnmatri x_iter_end() returns FALSE (0).
Arguments:

mt: pointer to the matrix iterator being moved

Returns:
Error code. The current implementation is always successful.

Time complexity: O(1).

I graph_spmatri x_iter_end — Checks whether there are more
elements in the iterator.

i graph_bool t igraph_spmatrix_iter_end(igraph spmatrix_iter_t *mt);

104

Data structure library: vec-
tor, matrix, other datatypes

Y ou should call thisfunction beforecallingi gr aph_spratri x_i ter _next () tomakesureyou
have more elementsin the iterator.

Arguments:

mt: pointer to the matrix iterator being checked

Returns:
TRUE (1) if there are more elementsin the iterator, FALSE (0) otherwise.
Time complexity: O(1).

| graph_spmatrix_iter_destroy — Frees the memory used by
the iterator.

void igraph_spmatrix_iter_destroy(igraph_spmatrix_iter t *mt);

Thecurrent implementation does not all ocate any memory upon creation, so thisfunction doesnothing.
However, since there is no guarantee that future implementations will not allocate any memory in
i graph_spmatrix_iter_create(),youarestill required to call this function whenever you
are done with the iterator.

Arguments:

mt: pointer to the matrix iterator being destroyed

Time complexity: O(1).
Matrix query operations

I graph_spmatri x_si ze — The number of elements in a sparse
matrix.

long int igraph_spnatrix_size(const igraph_spmatrix_t *nj;

Arguments:

m Pointer to an initialized sparse matrix object.

Returns:
The size of the matrix.
Time complexity: O(1).

| graph_spmatri x_nrow— The number of rows in a sparse ma-
trix.

105

Data structure library: vec-
tor, matrix, other datatypes

long int igraph_spmatrix_nrow(const igraph_spmatrix_t *nj;

Arguments:

m Pointer to aninitialized sparse matrix object.

Returns:
The number of rows in the matrix.
Time complexity: O(1).

I graph_spmatri x_ncol — The number of columns in a sparse
matrix.

long int igraph_spmatrix_ncol (const igraph_spmatrix_t *m;

Arguments:

m Pointer to an initialized sparse matrix object.

Returns:
The number of columnsin the sparse matrix.
Time complexity: O(1).

| graph_spmatri x_count _nonzer o — The number of non-zero
elements in a sparse matrix.

long int igraph_spnmatrix_count_nonzero(const igraph _spmatrix t *m;

Arguments:

m Pointer to an initialized sparse matrix object.

Returns:
The size of the matrix.
Time complexity: O(1).

| graph_spmatri x_nmax — Returns the maximum element of a
matrix.

i graph_real t igraph_spmatrix_max(const igraph_spmatrix t *m
igraph_real t *ridx, igraph_real t *cidx);

106

Data structure library: vec-
tor, matrix, other datatypes

If the matrix is empty, zero is returned.

Arguments:

m the matrix object.

ridx: therow index of the maximum element if not NULL.

ci dx: thecolumnindex of the maximum element if not NULL.
Time complexity: O(n), the number of nonzero elements in the matrix.

I graph_spmatri x_rowsuns — Calculates the row sums of the
matrix.

int igraph_spmatrix_rowsuns(const igraph_spmatrix_t *m igraph_vector_t *res);

Arguments:
m The matrix.

res: Aninitidlizedi gr aph_vect or _t , theresult will be stored here. The vector will be resized
as needed.

Time complexity: O(n), the number of nonzero elements in the matrix.

| graph_spmatri x_col suns — Calculates the column sums of
the matrix.

int igraph_spmatrix_col sunms(const igraph_spmatrix_t *m igraph_vector_t *res);

Arguments:
m The matrix.

res: Aninitidlizedi gr aph_vect or _t , theresult will be stored here. The vector will be resized
as needed.

Time complexity: O(n), the number of nonzero elements in the matrix.

Matrix operations

I graph_spmatri x_scal e — Multiplies each element of the
sparse matrix by a constant.
void igraph_spmatrix_scal e(i graph_spmatrix_t *m igraph_real _t by);

Arguments:

m The matrix.

107

Data structure library: vec-
tor, matrix, other datatypes

by: Theconstant.

Time complexity: O(n), the number of elementsin the matrix.

| graph_spmatri x_add_rows — Adds rows to a sparse matrix.

int igraph_spmatrix_add_rows(igraph_spmatrix_t *m long int n);

Arguments:
m The sparse matrix object.

n: Thenumber of rows to add.

Returns:
Error code.
Time complexity: O(1).

I graph_spmatri x_add_col s — Adds columns to a sparse ma-
trix.

int igraph_spmatrix_add_col s(igraph_spmatrix_t *m long int n);

Arguments:
m The sparse matrix object.

n: Thenumber of columns to add.

Returns:
Error code.

Time complexity: O(1).

| graph_spmatri x_resi ze — Resizes a sparse matrix.

int igraph_spmatrix_resize(igraph_spmatrix_t *m long int nrow, |long int ncol);
This function resizes a sparse matrix by adding more elements to it. The matrix retains its data even

after resizing it, except for the data which lies outside the new boundaries (if the new sizeissmaller).

Arguments:

m Pointer to an already initialized sparse matrix object.

nrow. Thenumber of rowsin the resized matrix.

108

Data structure library: vec-
tor, matrix, other datatypes

ncol : Thenumber of columnsin the resized matrix.

Returns:
Error code.

Time complexity: O(n). nisthe number of elementsin the old matrix.

Printing sparse matrices

I graph_spmatrix_print — Prints a sparse matrix.

int igraph_spmatrix_print(const igraph_spmatrix_t* matrix);
Prints a sparse matrix to the standard output. Only the non-zero entries are printed.
Returns:

Error code.
Time complexity: O(n), the number of non-zero elements.

I graph_spmatri x_fprint —Prints a sparse matrix to the given
file.

int igraph_spmatrix_fprint(const igraph_spmatrix_t* matrix, FILE *file);
Prints a sparse matrix to the given file. Only the non-zero entries are printed.
Returns:

Error code.

Time complexity: O(n), the number of non-zero elements.

Sparse matrices, another kind

About sparse matrices

Thei graph_spar senat _t data type stores sparse matrices, i.e. matrices in which the majority
of the elements are zero.

The datatypeis essentially awrapper to some of the functionsin the CX Sparse library, by Tim Davis,
see http://faculty.cse.tamu.edu/davis/suitesparse.html

Matrices can be stored in two formats: triplet and column-compressed. The triplet format is intended
for sparse matrix initialization, asit is easy to add new (non-zero) elementsto it. Most of the compu-
tations are done on sparse matrices in column-compressed format, after the user has converted the
triplet matrix to column-compressed, viai gr aph_spar semat _conpress() .

Both formats are dynamic, in the sense that new elements can be added to them, possibly resulting
the allocation of more memory.

Row and column indices follow the C convention and are zero-based.

109

http://faculty.cse.tamu.edu/davis/suitesparse.html

Data structure library: vec-
tor, matrix, other datatypes

Example 7.5. Fileexanpl es/ si npl e/ i graph_spar semat . c

Example 7.6. Fileexanpl es/ si npl e/ i graph_spar semat 3.

(@]

Example 7.7. Fileexanpl es/ si npl e/ i graph_spar semat 4.

(@]

Example 7.8. Fileexanpl es/ si npl e/ i graph_spar semat 6.

(@]

Example 7.9. Fileexanpl es/ si npl e/ i graph_spar semat 7.

(@]

Example 7.10. Fileexanpl es/ si npl e/ i gr aph_sparsemat 8. c

Creating sparse matrix objects

| graph_sparsemat i nit — Initializes a sparse matrix, in triplet
format.

int igraph_sparsemat_init(igraph_sparsemat_t *A, int rows, int cols, int nzmax)

This is the most common way to create a sparse matrix, together with the i gr aph_spar se-
mat _ent ry() function, which can be used to add the non-zero elements one by one. Once done, the
user cancali graph_spar semat _conpr ess() toconvert the matrix to column-compressed, to
allow computations with it.

The user must call i gr aph_spar senat _destroy() on the matrix to deallocate the memory,
once the matrix is no more needed.

Arguments:

A Pointer to anot yet initialized sparse matrix.
r ows: The number of rowsin the matrix.

col s: The number of columns.

nzmax: Themaximum number of non-zero elementsin the matrix. It isnot compulsory to get this
right, but it is useful for the allocation of the proper amount of memory.

Returns:
Error code.

Time complexity: TODO.

| graph_spar semat _copy — Copies a sparse matrix.

i nt igraph_sparsenat_copy(igraph_sparsemat _t *to,
const igraph_sparsemat_t *from;

110

Data structure library: vec-
tor, matrix, other datatypes

Create a sparse matrix object, by copying another one. The source matrix can be either in triplet or
column-compressed format.

Exactly the same amount of memory will be allocated to the copy matrix, as it is currently for the
original one.

Arguments:
t o: Pointer to an uninitialized sparse matrix, the copy will be created here.

from The sparse matrix to copy.

Returns:
Error code.

Time complexity: O(n+nzmax), the number of columns plus the maximum number of non-zero ele-
ments.

| graph_sparsemat _real | oc — Allocates more (or less) memo-
ry for a sparse matrix.

int igraph_sparsemat_realloc(igraph_sparsemat_t *A, int nzmax);

Sparse matrices automatically allocate more memory, as needed. To control memory allocation, the
user can call this function, to allocate memory for a given number of non-zero elements.

Arguments:
A The sparse matrix, it can bein triplet or column-compressed format.

nzmax: Thenew maximum number of non-zero elements.

Returns:
Error code.

Time complexity: TODO.

| graph_spar semat _destroy — Deallocates memory used by a
sparse matrix.

voi d igraph_sparsemat _destroy(i graph_sparsemat _t *A);

One destroyed, the sparse matrix must be initialized again, before calling any other operation on it.
Arguments:

A The sparse matrix to destroy.

Time complexity: O(1).

| graph_sparsenmat _eye — Creates a sparse identity matrix.

111

Data structure library: vec-
tor, matrix, other datatypes

i nt igraph_sparsemat_eye(igraph_sparsemat_t *A, int n, int nzmax,
i graph_real _t val ue,
i graph_bool _t conpress);

Arguments:

A An uninitialized sparse matrix, the result is stored here.

n: The number of rows and number of columnsin the matrix.

nzmax: The maximum number of non-zero elements, this essentially gives the amount of
memory that will be allocated for matrix elements.

val ue: The value to store in the diagonal.

conpress: Whether tocreateacolumn-compressed matrix. If false, then atriplet matrix iscreated.

Returns:
Error code.

Time complexity: O(n).

| graph_spar semat _di ag — Creates a sparse diagonal matrix.

i nt igraph_sparsemat _diag(igraph_sparsemat t *A, int nznax,
const igraph_vector_t *val ues,
i graph_bool t conpress);

Arguments:

A An uninitialized sparse matrix, the result is stored here.

nzmax: The maximum number of non-zero elements, this essentially gives the amount of
memory that will be allocated for matrix elements.

val ues: The values to store in the diagonal, the size of the matrix defined by the length of

this vector.

conpress: Whether tocreateacolumn-compressed matrix. If false, then atriplet matrix iscreated.

Returns:
Error code.

Time complexity: O(n), the length of the diagonal vector.

| gr aph_spar semat _vi ew— Initialize a sparse matrix and set all
parameters.

int igraph_sparsemat_view(igraph sparsemat _t *A, int nzmax, int m int

112

Data structure library: vec-
tor, matrix, other datatypes

int *p, int *i, double *x, int nz);

This function can be used to temporarily handle existing sparse matrix data, usually crested by anoth-
er software library, asan i gr aph_spar semat _t object, and thus avoid unnecessary copying. It
supports data stored in either the compressed sparse column format, orthe (i, j, x) triplet format
wherei andj arethe matrix indices of anon-zero element, and x isitsvalue.

The compressed sparse column (or row) format is commonly used to represent sparse matrix data.
It consists of three vectors, the p column pointers, thei row indices, and the x values. p[k] isthe
number of non-zero entires in matrix columns k- 1 and lower. p[0] is always zero and p[n] is
always the total number of non-zero entiresin the matrix.i [|] istherow index of thel - t h stored
element, whilex[|] isitsvaue. If amatrix element withindices(j, k) isexplicitly stored, it must
be located between positions p[k] and p[k+1] - 1 (inclusive) inthei and x vectors.

Do not call i gr aph_spar semat _destroy() on asparse matrix created with this function. In-
stead, i gr aph_free() must be caled on the cs field of A to free the storage alocated by this
function.

Warning: Matrices created with this function must not be used with functions that may reallocate the
underlying storage, such asi gr aph_spar semat _entry().

Arguments:
A The non-initialized sparse matrix.

nzmax: The maximum number of entries, typically the actual number of entries.

m The number of matrix rows.
n: The number of matrix columns.
p: For a compressed matrix, thisis the column pointer vector, and must be of size n+1. For

atriplet format matrix, it is avector of column indices and must be of size nzmax.

i: The row vector. This should contain the row indices of the elements in x. It must be of

sizenzmax.
X: The values of the non-zero elements of the sparse matrix. It must be of sizenznax.
nz: For a compressed matrix, is must be -1. For a triplet format matrix, is must contain the

number of entries.

Returns:
Error code.

Time complexity: O(1).
Query properties of a sparse matrix

| graph_spar semat i ndex — Extracts a submatrix or a single el-
ement.

i nt igraph_sparsemat _index(const igraph_sparsemat t *A,
const igraph_vector_int_t *p,
const igraph_vector_int_t *q,
i graph_sparsenat _t *res,

113

Data structure library: vec-
tor, matrix, other datatypes

i graph_real _t *constres);

This function indexes into a sparse matrix. It serves two purposes. First, it can extract submatrices
from a sparse matrix. Second, as a special case, it can extract a single element from a sparse matrix.

Arguments:

A The input matrix, it must be in column-compressed format.

p: An integer vector, or anull pointer. The selected row index or indices. A null pointer
selects all rows.

q: An integer vector, or a null pointer. The selected column index or indices. A null
pointer selectsall columns.

res: Pointer to an uninitialized sparse matrix, or anull pointer. If not a null pointer, then

the selected submatrix is stored here.

constres: Pointer to areal variable or a null pointer. If not a null pointer, then the first non-
zero element in the selected submatrix is stored here, if there is one. Otherwise zero
is stored here. This behavior is handy if one wants to select a single entry from the
matrix.

Returns:
Error code.

Time complexity: TODO.

| graph_spar semat _nr ow— Number of rows.

long int igraph_sparsemat_nrow const igraph_sparsemat t *A);

Arguments:

A: Theinput matrix, in triplet or column-compressed format.

Returns:
The number of rowsin the A matrix.

Time complexity: O(1).

| graph_sparsemat _ncol — Number of columns.

long int igraph_sparsemat_ncol (const igraph_sparsemat _t *A);

Arguments:

A Theinput matrix, in triplet or column-compressed format.

Returns:

114

Data structure library: vec-
tor, matrix, other datatypes

The number of columnsin the A matrix.
Time complexity: O(1).

| graph_sparsemat _type — Type of a sparse matrix (triplet or
column-compressed).

i graph_sparsemat _type_ t igraph_sparsemat type(const igraph _sparsenat t *A);
Gives whether a sparse matrix is stored in the triplet format or in column-compressed format.
Arguments:

A: Theinput matrix.

Returns:

Either | GRAPH_SPARSENMAT _CCor | GRAPH _SPARSEVAT TRI PLET.
Time complexity: O(1).

| graph_sparsemat _is triplet —Isthis sparse matrix in
triplet format?

i graph_bool t igraph_sparsenmat _is triplet(const igraph_sparsemat t *A);
Decides whether a sparse matrix isin triplet format.
Arguments:

A Theinput matrix.

Returns:
Oneif the input matrix isin triplet format, zero otherwise.
Time complexity: O(1).

| graph_sparsemat i s _cc —Is this sparse matrix in col-
umn-compressed format?

i graph_bool _t igraph_sparsemat_is_cc(const igraph_sparsemat_t *A);
Decides whether a sparse matrix isin column-compressed format.
Arguments:

A Theinput matrix.

Returns:

115

Data structure library: vec-
tor, matrix, other datatypes

Oneif the input matrix isin column-compressed format, zero otherwise.
Time complexity: O(1).

| gr aph_spar semat _get el enent s_sort ed — Returns the sort-
ed elements of a sparse matrix.

i nt igraph_sparsemat_getel ements_sorted(const igraph_sparsemat_t *A,
i graph_vector_int_t *i,
i graph_vector_int_t *j,
i graph_vector_t *x);

This function will sort a sparse matrix and return the elementsin 3 vectors. Two vectors will indicate
where the elements are located, and one will give the elements.

Arguments:
A: A sparse matrix in either triplet or compressed form.
i : Aninitialized int vector. Thiswill store the rows of the returned elements.

j © Aninitialized int vector. For atriplet matrix thiswill store the columns of the returned elements.
For a compressed matrix, if the column index isk, then j [k] istheindex in x of the start of
the k- t h column, and the last element of j isthe total number of elements. The total number
of elementsin the k-t h column isthereforej [k+1] - j[k] . For example, if thereis one
element in the first column, and fivein the second, j will besetto{0, 1, 6}.

X: Aninitialized vector. The elements will be placed here.

Returns:
Error code.

Time complexity: O(n), the number of stored elementsin the sparse matrix.

| gr aph_spar semat _m n — Minimum of a sparse matrix.

i graph_real _t igraph_sparsemat_m n(igraph_sparsemat _t *A);

Arguments:

A: Theinput matrix, column-compressed.

Returns:
The minimum in the input matrix, or | GRAPH_POSI NFI NI TY if the matrix has zero elements.

Time complexity: TODO.

| graph_spar semat _nmax — Maximum of a sparse matrix.

i graph_real t igraph_sparsemat_nax(i graph_sparsemat _t *A);

116

Data structure library: vec-
tor, matrix, other datatypes

Arguments:

A: Theinput matrix, column-compressed.

Returns:
The maximum in the input matrix, or | GRAPH_NEG NFI NI TY if the matrix has zero elements.
Time complexity: TODO.

I gr aph_spar semat _m nmax — Minimum and maximum of a
sparse matrix.

i nt igraph_sparsemat_ni nmax(i graph_sparsemat _t *A,

igraph_real _t *min, igraph_real _t *nmax);
Arguments:
A The input matrix, column-compressed.

m n: The minimum in the input matrix is stored here, or | GRAPH_POSI NFI NI TY if the matrix
has zero elements.

max: The maximum in the input matrix is stored here, or | GRAPH _NEGQ NFI NI TY if the matrix
has zero elements.
Returns:
Error code.

Time complexity: TODO.

| graph_sparsemat _count _nonzer o — Counts nonzero ele-
ments of a sparse matrix.

long int igraph_sparsenat_count_nonzero(igraph_sparsemat_t *A);

Arguments:

A Theinput matrix, column-compressed.

Returns:
Error code.
Time complexity: TODO.

| gr aph_spar semat _count _nonzer ot ol — Counts nonzero ele-
ments of a sparse matrix, ignoring elements close to zero.

117

Data structure library: vec-
tor, matrix, other datatypes

l ong int igraph_sparsenmat_count_nonzerotol (i graph_sparsemat _t *A,
igraph_real _t tol);

Count the number of matrix entries that are closer to zero thant ol .
Arguments:
The: input matrix, column-compressed.

Real : scalar, the tolerance.

Returns:
Error code.

Time complexity: TODO.

| graph_spar semat _rowsunms — Row-wise sums.

i nt igraph_sparsemat_rowsuns(const igraph_sparsemat t *A,
i graph_vector_t *res);

Arguments:

A The input matrix, in triplet or column-compressed format.

res: Aninitialized vector, the result is stored here. It will be resized as needed.

Returns:
Error code.

Time complexity: O(nz), the number of non-zero elements.

| graph_sparsemat _col sunms — Column-wise sums.

i nt igraph_sparsemat_col suns(const igraph_sparsemat _t *A,
i graph_vector_t *res);

Arguments:

A The input matrix, in triplet or column-compressed format.

res: Aninitialized vector, the result is stored here. It will be resized as needed.

Returns:
Error code.

Time complexity: O(nz) for triplet matrices, O(nz+n) for column-compressed ones, nz is the number
of non-zero elements, n is the number of columns.

118

Data structure library: vec-
tor, matrix, other datatypes

| graph_sparsemat _nonzer o_st or age — Returns number of
stored entries of a sparse matrix.

i nt igraph_sparsemat_nonzero_storage(const igraph_sparsemat_t *A);

Thisfunction will return the number of stored entries of asparse matrix. These entries can be zero, and
multiple entries can be at the same position. Usei gr aph_spar semat _dupl () to sum duplicate
entries, and i gr aph_spar semat _dr opzer os() to remove zeros.

Arguments:

A: A sparse matrix in either triplet or compressed form.

Returns:
Number of stored entries.

Time complexity: O(1).
Operations on sparse matrices

I graph_sparsemat _entry — Adds an element to a sparse ma-
trix.

int igraph_sparsemat_entry(igraph_sparsemat_t *A, int row, int col,
i graph_real _t elem;

This function can be used to add the entries to a sparse matrix, after initiaizing it with i gr aph_s-
par semat _i nit () . If youadd multiple entriesin the same position, they will al be saved, and the
resulting value is the sum of al entriesin that position.

Arguments:

A The input matrix, it must bein triplet format.
r ow. The row index of the entry to add.

col : The column index of the entry to add.

el em Thevaueof the entry.

Returns:
Error code.
Time complexity: O(1) on average.

| gr aph_spar semat _f keep — Filters the elements of a sparse
matrix.

119

Data structure library: vec-
tor, matrix, other datatypes

i nt igraph_sparsemat_fkeep(
i graph_sparsemat _t *A,
i graph_integer_t (*fkeep)(igraph_integer_t, igraph_integer_t, igraph_real _t
voi d *ot her

)

This function can be used to filter the (non-zero) elements of a sparse matrix. For al entries, it cals
the supplied function and depending on the return values either keeps, or deleted the element from
the matrix.

Arguments:
A The input matrix, in column-compressed format.

f keep: Thefilter function. It must take four arguments: the firstisan i nt , the row index of the
entry, the second is another i nt , the column index. The thirdisi gr aph_r eal _t, the
value of the entry. The fourth element isavoi d pointer, the ot her argument is passed
here. The function must return ani nt . If thisis zero, then the entry is deleted, otherwise
it iskept.

ot her: Avoi d pointer that is passed to the filtering function.

Returns:
Error code.
Time complexity: TODO.

| graph_spar semat _dropzer os — Drops the zero elements from
a sparse matrix.

i nt igraph_sparsemat _dropzeros(igraph_sparsenat _t *A);

As aresult of matrix operations, some of the entries in a sparse matrix might be zero. This function
removes these entries.

Arguments:

A Theinput matrix, it must bein column-compressed format.

Returns:
Error code.

Time complexity: TODO.

| graph_spar semat _dr opt ol — Drops the almost zero elements
from a sparse matrix.

i nt igraph_sparsemat_droptol (i graph_sparsemat _t *A, igraph_real t tol);

Thisfunctionissimilartoi gr aph_spar semat _dr opzer os(), but it also drops entriesthat are
closer to zero than the given tolerance threshold.

120

Data structure library: vec-
tor, matrix, other datatypes

Arguments:
A The input matrix, it must be in column-compressed format.

tol : Real number, giving the tolerance threshold.

Returns:
Error code.

Time complexity: TODO.

| graph_sparsemat _scal e — Scales a sparse matrix.

i nt igraph_sparsemat_scal e(i graph_sparsemat _t *A, igraph_real t by);
Multiplies all elements of a sparse matrix, by the given scalar.

Arguments:

A The input matrix.

by: Thescaling factor.

Returns:
Error code.

Time complexity: O(nz), the number of non-zero elementsin the matrix.

| graph_spar semat _per nut e — Permutes the rows and
columns of a sparse matrix.

i nt igraph_sparsemat_permute(const igraph_sparsemat _t *A,
const igraph_vector_int_t *p,
const igraph_vector_int_t *q,
i graph_sparsemat _t *res);

Arguments:

A The input matrix, it must be in column-compressed format.
p: Integer vector, giving the permutation of the rows.

q: Integer vector, the permutation of the columns.

res: Pointer to an uninitialized sparse matrix, the result is stored here.

Returns:
Error code.

Time complexity: O(m+n+nz), the number of rows plus the number of columns plus the number of
non-zero elements in the matrix.

121

Data structure library: vec-
tor, matrix, other datatypes

i graph_spar semat _transpose — Transposes a sparse matrix.

i nt igraph_sparsemat _transpose(const igraph_sparsenmat _t *A,
i graph_sparsenat _t *res,

i nt val ues);
Arguments:
A The input matrix, column-compressed or triple format.
res: Pointer to an uninitialized sparse matrix, the result is stored here.

val ues: If thisis non-zero, the matrix transpose is calculated the normal way. If it is zero, then
only the pattern of the input matrix is stored in the result, the values are not.
Returns:
Error code.

Time complexity: TODO.

| graph_spar semat _add — Sum of two sparse matrices.

i nt igraph_sparsemat_add(const igraph_sparsemat _t *A
const igraph_sparsemat _t *B,
i graph_real _t al pha,
i graph_real _t beta,
i graph_sparsemat _t *res);

Arguments:
A Thefirst input matrix, in column-compressed format.
B: The second input matrix, in column-compressed format.

al pha: Real scalar, Aismultiplied by al pha before the addition.
bet a: Real scalar, B ismultiplied by bet a before the addition.

res: Pointer to an uninitialized sparse matrix, the result is stored here.

Returns:
Error code.

Time complexity: TODO.

| graph_sparsemat _nul ti pl y — Matrix multiplication.

int igraph_sparsemat _nultiply(const igraph_sparsemat _t *A,
const igraph_sparsemat _t *B,
i graph_sparsemat _t *res);

122

Data structure library: vec-
tor, matrix, other datatypes

Multiplies two sparse matrices.

Arguments:
A Thefirst input matrix (left hand side), in column-compressed format.
B: The second input matrix (right hand side), in column-compressed format.

res: Pointer to an uninitialized sparse matrix, the result is stored here.

Returns:
Error code.
Time complexity: TODO.

| graph_spar semat _gaxpy — Matrix-vector product, added to
another vector.

i nt igraph_sparsemat_gaxpy(const igraph_sparsemat_t *A,
const igraph_vector_t *x,
i graph_vector_t *res);

Arguments:
A The input matrix, in column-compressed format.
X: Theinput vector, its size must match the number of columnsin A.

res: Thisvector isadded to the matrix-vector product and it is overwritten by the result.

Returns:
Error code.

Time complexity: TODO.

| graph_sparsemat add _rows — Adds rows to a sparse matrix.

i nt igraph_sparsemat_add_rows(igraph_sparsemat_t *A, long int n);
The current matrix elements are retained and all elementsin the new rows are zero.

Arguments:

A: Theinput matrix, in triplet or column-compressed format.

n: Thenumber of rows to add.

Returns:
Error code.

Time complexity: O(1).

123

Data structure library: vec-
tor, matrix, other datatypes

| graph_sparsemat _add _col s — Adds columns to a sparse ma-
trix.

int igraph_sparsemat_add _col s(i graph_sparsemat _t *A, long int n);
The current matrix elements are retained, and al elementsin the new columns are zero.
Arguments:

A: Theinput matrix, intriplet or column-compressed format.

n: Thenumber of columns to add.

Returns:
Error code.

Time complexity: TODO.

| graph_sparsemat _resi ze — Resizes a sparse matrix.

i nt igraph_sparsemat_resize(igraph_sparsemat_t *A, long int nrow,
long int ncol, int nzmax);

This function resizes a sparse matrix. The resized sparse matrix will be empty.
Arguments:

A The initialized sparse matrix to resize.

nr ow. The new number of rows.

ncol : The new number of columns.

nznmax: The new maximum number of e ements.

Returns:
Error code.

Time complexity: O(nzmax), the maximum number of non-zero elements.

Operations on sparse matrix iterators

| graph_sparsemat iterator _init —Initialize a sparse matrix
iterator.

int igraph_sparsemat_iterator_init(igraph_sparsemat_iterator_t *it,
i graph_sparsenat _t *sparsenat);

Arguments:

124

Data structure library: vec-
tor, matrix, other datatypes

it: A pointer to an uninitialized sparse matrix iterator.

spar semat : Pointer to the sparse matrix.

Returns:
Error code. Thiswill always return | GRAPH_SUCCESS

Time complexity: O(n), the number of columns of the sparse matrix.

| graph_sparsemat iterator reset — Reset a sparse matrix
iterator to the first element.

int igraph_sparsemat _iterator_reset(igraph_sparsenmat _iterator t *it);

Arguments:

it: A pointer to the sparse matrix iterator.

Returns:
Error code. Thiswill always return | GRAPH_SUCCESS

Time complexity: O(n), the number of columns of the sparse matrix.

| graph_sparsemat iterator_end— Query if the iterator is
past the last element.

i graph_bool _t
i graph_sparsenat _iterator_end(const igraph_sparsenmat _iterator_t *it);

Arguments:

it: A pointer to the sparse matrix iterator.

Returns:
trueif theiterator is past the last element, falseif it pointsto an element in a sparse matrix.

Time complexity: O(1).

| graph_sparsemat iterator_ row— Return the row of the iter-
ator.

int igraph_sparsemat_iterator_row const igraph_sparsemat_iterator_t *it);

Arguments:

it: A pointer to the sparse matrix iterator.

125

Data structure library: vec-
tor, matrix, other datatypes

Returns:
The row of the element at the current iterator position.

Time complexity: O(1).

I graph_sparsemat _i terat or _col — Return the column of the
iterator.

int igraph_sparsemat_iterator_col (const igraph_sparsemat_iterator_t *it);

Arguments:

it: A pointer to the sparse matrix iterator.

Returns:
The column of the element at the current iterator position.

Time complexity: O(1).

| graph_sparsemat _i t erat or _get — Return the element at the
current iterator position.

i graph_real _t
i graph_sparsemat _iterator_get(const igraph_sparsemat _iterator_ t *it);

Arguments:

it: A pointer to the sparse matrix iterator.

Returns:
The value of the element at the current iterator position.

Time complexity: O(1).

| graph_sparsemat iterator_ next — Let asparse matrix iter-
ator go to the next element.
int igraph_sparsemat _iterator_next(igraph_sparsemat _iterator t *it);

Arguments:

it: A pointer to the sparse matrix iterator.

Returns:

126

Data structure library: vec-
tor, matrix, other datatypes

The position of the iterator in the element vector.
Time complexity: O(n), the number of columns of the sparse matrix.

| graph_sparsemat iterator i dx — Returns the element vec-
tor index of a sparse matrix iterator.

int igraph_sparsemat _iterator _idx(const igraph_sparsemat _iterator_t *it);

Arguments:

it: A pointer to the sparse matrix iterator.

Returns:
The position of the iterator in the element vector.

Time complexity: O(1).
Operations that change the internal representation

| graph_spar semat _conpress — Converts a sparse matrix to
column-compressed format.

i nt igraph_sparsemat_conpress(const igraph_sparsemat _t *A,
i graph_sparsemat _t *res);

Converts a sparse matrix from triplet format to column-compressed format. Almost all sparse matrix
operations require that the matrix isin column-compressed format.

Arguments:
A The input matrix, it must bein triplet format.

res: Pointer to an uninitialized sparse matrix object, the compressed version of Ais stored here.

Returns:
Error code.
Time complexity: O(nz) where nz is the number of non-zero elements.

I graph_spar semat _dupl — Removes duplicate elements from a
sparse matrix.

i nt igraph_sparsemat _dupl (i graph_sparsenat _t *A);

It is possible that a column-compressed sparse matrix stores a single matrix entry in multiple pieces.
The entry is then the sum of all its pieces. (Some functions create matrices like this.) This function
eliminates the multiple pieces.

127

Data structure library: vec-
tor, matrix, other datatypes

Arguments:

A: Theinput matrix, in column-compressed format.

Returns:
Error code.

Time complexity: TODO.

Decompositions and solving linear systems

| graph_sparsemat synbl u — Symbolic LU decomposition.

int igraph_sparsemat_synblu(long int order, const igraph_sparsemat _t
i graph_sparsemat _synbolic_t *dis);

LU decomposition of sparse matrices involves two steps, the first is calling this function, and then
i graph_sparsenmat | u().

Arguments:

order: The ordering to use: O means natural ordering, 1 means minimum degree ordering of A
+A', 2 is minimum degree ordering of A'A after removing the dense rows from A, and 3
is the minimum degree ordering of A'A.

A The input matrix, in column-compressed format.
di s: The result of the symbolic analysis is stored here. Once not needed anymore, it must be
destroyed by callingi gr aph_spar semat _synbol i c_destroy().
Returns:
Error code.

Time complexity: TODO.

| graph_sparsemat _synbqr — Symbolic QR decomposition.

int igraph_sparsemat_synbgr(long int order, const igraph_sparsemat _t
i graph_sparsemat _synbolic_t *dis);

QR decomposition of sparse matrices involves two steps, the first is calling this function, and then
i graph_sparsemat _qr ().

Arguments:

order: The ordering to use: 0 means natural ordering, 1 means minimum degree ordering of A
+A', 2 is minimum degree ordering of A'A after removing the dense rows from A, and 3
is the minimum degree ordering of A'A.

A The input matrix, in column-compressed format.

di s: The result of the symbolic analysis is stored here. Once not needed anymore, it must be
destroyed by callingi gr aph_spar semat _synbol i c_destroy().

128

* A,

* A,

Data structure library: vec-
tor, matrix, other datatypes

Returns:
Error code.
Time complexity: TODO.

| graph_sparsemat | sol ve — Solves a lower-triangular linear
system.

i nt igraph_sparsemat_| sol ve(const igraph_sparsemat _t *L,
const igraph_vector_t *b,
i graph_vector_t *res);

Solve the Lx=b linear equation system, where the L coefficient matrix is square and lower-triangular,
with a zero-free diagonal.

Arguments:
L: The input matrix, in column-compressed format.
b: Theright hand side of the linear system.

res: Aninitialized vector, the result is stored here.

Returns:
Error code.
Time complexity: TODO.

| graph_sparsemat |t sol ve — Solves an upper-triangular lin-
ear system.

int igraph_sparsemat |tsol ve(const igraph_sparsemat t *L,
const igraph_vector_t *b,
i graph_vector _t *res);

Solve the L'x=b linear equation system, where the L matrix is square and lower-triangular, with a
zero-free diagonal.

Arguments:
L: The input matrix, in column-compressed format.
b: Theright hand side of the linear system.

res: Aninitialized vector, the result is stored here.

Returns:
Error code.

Time complexity: TODO.

129

Data structure library: vec-
tor, matrix, other datatypes

| graph_spar semat _usol ve — Solves an upper-triangular linear
system.

i nt igraph_sparsemat_usol ve(const igraph_sparsemat _t *U,
const igraph_vector_t *b,
i graph_vector_t *res);

Solves the Ux=Db upper triangular system.

Arguments:
U The input matrix, in column-compressed format.
b: Theright hand side of the linear system.

res: Aninitialized vector, the result is stored here.

Returns:
Error code.
Time complexity: TODO.

| gr aph_spar semat _ut sol ve — Solves a lower-triangular linear
system.

i nt igraph_sparsemat_utsol ve(const igraph_sparsemat _t *U,
const igraph_vector_t *b,
i graph_vector_t *res);

Thisisthesameasi gr aph_spar sermat _usol ve(), but U'x=b is solved, where the apostrophe
denotes the transpose.

Arguments:
U The input matrix, in column-compressed format.
b: Theright hand side of the linear system.

res: Aninitialized vector, the result is stored here.

Returns:
Error code.
Time complexity: TODO.

| graph_spar semat _chol sol — Solves a symmetric linear sys-
tem via Cholesky decomposition.

i nt igraph_sparsenmat_chol sol (const igraph_sparsemat _t *A,
const igraph_vector _t *b,

130

Data structure library: vec-
tor, matrix, other datatypes

i graph_vector_t *res,
int order);

Solve Ax=h, where A is a symmetric positive definite matrix.

Arguments:

A The input matrix, in column-compressed format.
V. Theright hand side.

res: An initialized vector, the result is stored here.

order: An integer giving the ordering method to use for the factorization. Zero is the natural
ordering; if it is one, then the fill-reducing minimum-degree ordering of A+A' is used.
Returns:
Error code.
Time complexity: TODO.

| graph_sparsemat | usol — Solves a linear system via LU de-
composition.

i nt igraph_sparsemat_| usol (const igraph_sparsemat_t *A,
const igraph_vector_t *b,
i graph_vector_t *res,
int order,
igraph_real _t tol);

Solve Ax=b, via LU factorization of A.

Arguments:

A The input matrix, in column-compressed format.
b: Theright hand side of the equation.

res: An initialized vector, the result is stored here.

order: Theordering method to use, zero means the natural ordering, one means the fill-reducing
minimum-degree ordering of A+A’, two means the ordering of A™*A, after removing the
dense rows from A. Three means the ordering of A*A.

tol: Real number, the tolerance limit to use for the numeric LU factorization.

Returns:
Error code.

Time complexity: TODO.

| graph_sparsemat | u— LU decomposition of a sparse matrix.

131

Data structure library: vec-
tor, matrix, other datatypes

i nt igraph_sparsemat_|u(const igraph_sparsemat_t *A,
const igraph_sparsemat_synbolic_t *dis,
i graph_sparsemat _nuneric_t *din, double tol);
Performs numeric sparse LU decomposition of a matrix.
Arguments:

A The input matrix, in column-compressed format.

di s: Thesymbolic analysisfor LU decomposition, coming from acall tothei gr aph_spar se-
mat _synbl u() function.

di n: The numeric decomposition, the result is stored here. It can be used to solve linear systems
with changing right hand side vectors, by calling i gr aph_spar senat | uresol ().
Once not needed any more, it must be destroyed by calling i gr aph_spar semat _sym
bolic_destroy() onit.

tol : Thetolerance for the numeric LU decomposition.

Returns:
Error code.

Time complexity: TODO.

| graph_sparsemat _qr — QR decomposition of a sparse matrix.

i nt igraph_sparsemat_qr(const igraph_sparsemat _t *A,
const igraph_sparsemat_synbolic_t *dis,
i graph_sparsemat _nuneric_t *din);
Numeric QR decomposition of a sparse matrix.
Arguments:

A The input matrix, in column-compressed format.

di s: The result of the symbolic QR analysis, from the function i gr aph_spar semat _sym
bar () .

di n: Theresult of thedecompositionisstored here, it can be used to solve many linear systemswith
the same coefficient matrix and changing right hand sides, using the i gr aph_spar se-
mat _qrresol () function. Once not needed any more, one should call i gr aph_s-
par semat _numeri c_destroy() onittofreethe alocated memory.

Returns:

Error code.

Time complexity: TODO.

| graph_spar semat _| uresol — Solves a linear system using a
precomputed LU decomposition.

132

Data structure library: vec-
tor, matrix, other datatypes

i nt igraph_sparsemat_| uresol (const igraph_sparsemat_synbolic_t *dis,
const igraph_sparsemat_nuneric_t *din,
const igraph_vector_t *b,
i graph_vector_t *res);

Usesthe LU decomposition of amatrix to solve linear systems.

Arguments:

di s: Thesymbolic analysis of the coefficient matrix, theresult of i gr aph_spar semat _sym
bl u().

di n: TheLU decomposition, theresult of acall toi gr aph_sparsemat | u().
b: A vector that defines the right hand side of the linear equation system.

res: Aninitialized vector, the solution of the linear system is stored here.

Returns:
Error code.
Time complexity: TODO.

| graph_sparsemat _qrresol — Solves alinear system using a
precomputed QR decomposition.

i nt igraph_sparsemat_qgrresol (const igraph_sparsemat_synbolic t *dis,
const igraph_sparsemat _nuneric_t *din,
const igraph_vector_t *b,
i graph_vector t *res);

Solves alinear system using a QR decomposition of its coefficient matrix.

Arguments:

di s: Symbolic analysis of the coefficient matrix, the result of i gr aph_spar semat _sym
bar ().

di n: TheQR decomposition of the coefficient matrix, theresult of i gr aph_spar semat _qr ().
b: Vector, giving the right hand side of the linear equation system.

res: Aninitialized vector, the solution is stored here. It isresized as needed.

Returns:
Error code.

Time complexity: TODO.

| graph_sparsemat _synbol i c_dest roy — Deallocates memory
after a symbolic decomposition.

133

Data structure library: vec-
tor, matrix, other datatypes

voi d i graph_sparsemat _synbol i c_destroy(igraph_sparsemat_synbolic_t *dis);

Frees the memory allocated by i graph_sparsemat _synbqr() or igraph_sparse-
mat _synbl u().

Arguments:
di s: Thesymbolic analysis.
Time complexity: O(1).

| graph_sparsemat _nuneri c_destroy — Deallocates memory
after a numeric decomposition.

voi d igraph_sparsemat _nuneri c_destroy(i graph_sparsemat_nuneric_t *din);
Freesthe memoty alocated by i gr aph_sparsemat _qr () ori graph_sparsenat | u().
Arguments:

di n: TheLU or QR decomposition.

Time complexity: O(1).
Eigenvalues and eigenvectors

I graph_spar semat _ar pack _rssol ve — Eigenvalues and eigen-
vectors of a symmetric sparse matrix via ARPACK.

int igraph_sparsemat_arpack_rssol ve(const igraph_sparsemat_t *A,
i graph_ar pack_options_t *options,
i graph_ar pack_storage_t *storage,
i graph_vector_t *val ues,
i graph_matrix_t *vectors,
i graph_sparsemat _sol ve_t sol venet hod);

Arguments:

The: input matrix, must be column-compressed.

options: Itispassedtoi gr aph_ar pack_rssol ve().Seei graph_ar pack_op-
tions_t for the details. If node is 1, then ARPACK uses regular mode, if
nmode is 3, then shift and invert mode is used and the si gma structure member
defines the shift.

st or age: Storage for ARPACK. See igraph_arpack rssolve() and
i graph_ar pack_storage_t for details.

val ues: An initialized vector or anull pointer, the eigenvalues are stored here.

vectors: An initialised matrix, or a null pointer, the eigenvectors are stored here, in the

columns.

sol venet hod: Themethod to solvethelinear system, if node is 3, i.e. the shift and invert mode
is used. Possible values:

134

Data structure library: vec-
tor, matrix, other datatypes

| GRAPH_SPARSE- The linear system is solved using LU de-
MAT SOLVE LU composition.
| GRAPH_SPARSE- The linear system is solved using QR de-
MAT _SOLVE R composition.
Returns:
Error code.

Time complexity: TODO.

| graph_spar semat _ar pack_rnsol ve — Eigenvalues and eigen-
vectors of a nonsymmetric sparse matrix via ARPACK.

int igraph_sparsemat_arpack_rnsol ve(const igraph_sparsemat_t *A,
i graph_ar pack_options_t *options,
i graph_ar pack_storage_t *storage,
i graph_matrix_t *val ues,
igraph_matrix_t *vectors);

Eigenvalues and/or eigenvectors of a nonsymmetric sparse matrix.

Arguments:

A The input matrix, in column-compressed mode.

options: ARPACK options, it is passed to i graph_arpack_rnsol ve(). See aso
i graph_ar pack_options_t for details.

storage: Storage for ARPACK, this is passed to i graph_ar pack_rnsol ve(). See
i graph_arpack_st orage_t for details.

val ues: An initialized matrix, or a null pointer. If not a null pointer, then the eigenvalues are
stored here, the first column isthe real part, the second column is the imaginary part.

vectors: Aninitialized matrix, or anull pointer. If not a null pointer, then the eigenvectors are
stored here, please seei gr aph_ar pack_rnsol ve() for the format.
Returns:
Error code.

Time complexity: TODO.

Conversion to other data types

| graph_spar semat — Creates an igraph graph from a sparse
matrix.

i nt igraph_sparsemat (igraph_t *graph, const igraph_sparsemat_t *A
i graph_bool _t directed);

135

Data structure library: vec-
tor, matrix, other datatypes

One edgeiscreated for each non-zero entry in the matrix. If you have asymmetric matrix, and want to
create an undirected graph, then del ete the entries in the upper diagonal first, or call i gr aph_si m
plify() ontheresult graph to eliminate the multiple edges.

Arguments:
gr aph: Pointer to an uninitialized igraph_t object, the graphsis stored here.
A Theinput matrix, in triplet or column-compressed format.

di rected: Boolean scaar, whether to create a directed graph.

Returns:
Error code.
Time complexity: TODO.

| graph_get spar semat — Converts an igraph graph to a sparse
matrix.

i nt igraph_get _sparsemat (const igraph_t *graph, igraph_sparsemat_t *res);
If the graph is undirected, then a symmetric matrix is created.
Arguments:

graph: Theinput graph.

res: Pointer to an uninitialized sparse matrix. The result will be stored here.
Returns:
Error code.

Time complexity: TODO.

I graph_matri x_as_spar semat — Converts a dense matrix to a
sparse matrix.

int igraph_matrix_as_sparsemnat (i graph_sparsenat t *res,
const igraph_matrix_t *mat,
i graph_real t tol);
Arguments:
res: Anuninitialized sparse matrix, the result is stored here.
mat : The dense input matrix.
tol : Read scaar, thetolerance. Vauescloser thant ol to zero are considered as zero, and will not

be included in the sparse matrix.

Returns:

136

Data structure library: vec-
tor, matrix, other datatypes

Error code.

Time complexity: O(mn), the number of elementsin the dense matrix.

| graph_sparsemat _as_natri x — Converts a sparse matrix to a
dense matrix.

int igraph_sparsemat_as_matrix(igraph _matrix_t *res,
const igraph_sparsemat _t *spnat);

Arguments:
res: Pointer to an initialized matrix, the result is stored here. It will be resized to the required
size.

spmat : Theinput sparse matrix, in triplet or column-compressed format.

Returns:
Error code.

Time complexity: O(mn), the number of elementsin the dense matrix.

Writing to a file, or to the screen

| graph_sparsemat _print — Prints a sparse matrix to afile.

i nt igraph_sparsemat_print(const igraph_sparsemat_t *A,
FI LE *out stream;

Only the non-zero entries are printed. This function serves more as a debugging utility, as currently
thereis no function that could read back the printed matrix from the file.

Arguments:
A Theinput matrix, triplet or column-compressed format.

out stream Thestream to print it to.

Returns:
Error code.

Time complexity: O(nz) for triplet matrices, O(n+nz) for column-compressed matrices. nz isthe num-
ber of non-zero elements, n is the number columns in the matrix.

Stacks

| graph_stack _init —Initializes a stack.

137

Data structure library: vec-
tor, matrix, other datatypes

int igraph_stack_init(igraph_stack t* s, long int size);
Theinitialized stack is always empty.

Arguments:

S: Pointer to an uninitialized stack.

si ze: Thenumber of elementsto alocate memory for.

Returns:
Error code.

Time complexity: O(si ze).

| graph_st ack _destroy — Destroys a stack object.

voi d igraph_stack_destroy(igraph_stack t* s);

Deallocate the memory used for a stack. It is possible to reinitialize a destroyed stack again by
i graph_stack_init().

Arguments:
s: Thestack to destroy.

Time complexity: O(1).

| graph_stack _reserve — Reserve memory.

int igraph_stack reserve(igraph_stack t* s, long int size);

Reserve memory for future use. The actual size of the stack is unchanged.

Arguments:

S: The stack object.

si ze: Thenumber of elementsto reserve memory for. If it isnot bigger than the current size then
nothing happens.

Returns:

Error code.

Time complexity: should be around O(n), the new allocated size of the stack.

| graph_st ack _enpty — Decides whether a stack ob-
ject is empty.

i graph_bool t igraph_stack enpty(igraph_stack t* s);

138

Data structure library: vec-
tor, matrix, other datatypes

Arguments:

s: Thestack object.

Returns:
Boolean, TRUE if the stack is empty, FALSE otherwise.

Time complexity: O(1).

| graph_stack_si ze — Returns the number of ele-
ments in a stack.

long int igraph_stack _size(const igraph_stack t* s);

Arguments:

s: Thestack object.

Returns:
The number of elementsin the stack.

Time complexity: O(1).

| graph_st ack _cl ear — Removes all elements from
a stack.

voi d igraph_stack clear(igraph_stack t* s);

Arguments:
s: Thestack object.

Time complexity: O(1).

| graph_stack push — Places an element on the top
of a stack.

i nt igraph_stack push(igraph_stack t* s, igraph_real t elem;
The capacity of the stack isincreased, if needed.

Arguments:

S: The stack object.

el em Theeement to push.

139

Data structure library: vec-
tor, matrix, other datatypes

Returns:
Error code.

Time complexity: O(1) is no reallocation is needed, O(n) otherwise, but it is ensured that n push
operations are performed in O(n) time.

| graph_st ack_pop — Removes and returns an ele-
ment from the top of a stack.

i graph_real t igraph_stack pop(igraph_stack t* s);
The stack must contain at least one element, call i gr aph_st ack_enpt y() to make sure of this.
Arguments:

s: Thestack object.

Returns:
The removed top element.

Time complexity: O(1).

| graph_stack top — Query top element.

i graph_real t igraph_stack top(const igraph_stack t* s);
Returns the top element of the stack, without removing it. The stack must be non-empty.
Arguments:

s: The stack.

Returns:
The top element.

Time complexity: O(1).

Double-ended queues

Thisisthe classic data type of the double ended queue. Most of the timeit is used if a First-In-First-
Out (FIFO) behavior is needed. See the operations below.

Example 7.11. Fileexanpl es/ si npl e/ dqueue. ¢

| graph_dqueue_i nit — Initialize a double ended
gueue (deque).

140

Data structure library: vec-
tor, matrix, other datatypes

i nt igraph_dqueue_init(igraph_dqueue_t* g, long int size);
The queue will be always empty.

Arguments:

q: Pointer to an uninitialized deque.

si ze: How many elementsto allocate memory for.

Returns:
Error code.

Time complexity: O(si ze).

| gr aph_dqueue_dest r oy — Destroy a double ended
queue.

voi d i graph_dqueue_destroy(i graph_dqueue t* q);

Arguments:
g: Thequeueto destroy

Time complexity: O(1).

| graph_dqueue_enpty — Decide whether the queue
IS empty.

i graph_bool _t igraph_dqueue_enpty(const igraph_dqueue_t* q);

Arguments:

g: Thequeue.

Returns:
Boolean, TRUE if q contains at least one element, FALSE otherwise.

Time complexity: O(1).

| graph_dqueue_ful | — Check whether the queue is
full.

i graph_bool _t igraph_dqueue_full (igraph_dqueue_t* q);

If aqueueisfull the next igraph_dqueue push() operation will allocate more memory.

141

Data structure library: vec-
tor, matrix, other datatypes

Arguments:

g: Thequeue.

Returns:
TRUE if q isfull, FALSE otherwise.

Time complecity: O(1).

| graph_dqueue_cl ear — Remove all elements from
the queue.

voi d i graph_dqueue_cl ear (i graph_dqueue_t* q);

Arguments:
g: Thequeue

Time complexity: O(1).

| graph_dqueue_si ze — Number of elements in the
queue.

long int igraph_dqueue_size(const igraph_dqueue t* q);

Arguments:

g: Thequeue.

Returns:
Integer, the number of elements currently in the queue.

Time complexity: O(1).

| gr aph_dqueue_head — Head of the queue.

i graph_real t igraph_dqueue_head(const igraph_dqueue t* q);
The queue must contain at least one element.
Arguments:

g: Thequeue.

Returns:

Thefirst element in the queue.

142

Data structure library: vec-
tor, matrix, other datatypes

Time complexity: O(1).

| gr aph_dqueue_back — Tail of the queue.

i graph_real t igraph_dqueue back(const igraph _dqueue t* q);
The queue must contain at least one element.
Arguments:

g: Thequeue.

Returns:
Thelast element in the queue.

Time complexity: O(1).

| gr aph_dqueue_pop — Remove the head.

i graph_real t igraph_dqueue_pop(igraph_dqueue t* q);
Removes and returns the first element in the queue. The queue must be non-empty.
Arguments:

g: Theinput queue.

Returns:
Thefirst element in the queue.

Time complexity: O(1).

| gr aph_dqueue_pop_back — Remove the tail

i graph_real t igraph_dqueue_pop_back(i graph_dqueue_t* q);
Removes and returns the last element in the queue. The queue must be non-empty.
Arguments:

g: Thequeue.

Returns:
The last element in the queue.

Time complexity: O(1).

| gr aph_dqueue_push — Appends an element.

143

Data structure library: vec-
tor, matrix, other datatypes

i nt igraph_dqueue_push(igraph_dqueue_t* g, igraph_real _t elenj;
Append an element to the end of the queue.

Arguments:

q: The queue.

el em Theelement to append.

Returns:
Error code.

Time complexity: O(1) if no memory allocation is needed, O(n), the number of elementsin the queue
otherwise. But not that by allocating always twice as much memory asthe current size of the queue we
ensure that n push operations can always be done in at most O(n) time. (Assuming memory allocation
isat most linear.)

Maximum and minimum heaps

| graph_heap_i nit — Initializes an empty heap ob-
ject.

int igraph_heap_init(igraph_heap_t* h, long int alloc_size);
Creates an empty heap, but allocates size for some elements.

Arguments:

h: Pointer to an uninitialized heap object.

al | oc_si ze: Number of elementsto allocate memory for.

Returns:
Error code.

Time complexity: O(al | oc_si ze), assuming memory alocation is alinear operation.

| graph_heap_init_array — Build a heap from an
array.

int igraph_heap_init_array(igraph_heap t *h, igraph_real t* data, long int |len)
Initializes a heap object from an array, the heap is also built of course (constructor).

Arguments:

h: Pointer to an uninitialized heap object.

dat a: Pointer to an array of base data type.

144

Data structure library: vec-
tor, matrix, other datatypes

| en: Thelength of the array at dat a.

Returns:
Error code.

Time complexity: O(n), the number of elementsin the heap.

| graph_heap _destr oy — Destroys an initialized
heap object.

voi d i graph_heap_destroy(igraph_heap_t* h);

Arguments:
h: The heap object.

Time complexity: O(1).

| graph_heap _enpty — Decides whether a heap ob-
ject is empty.

i graph_bool _t igraph_heap_enpty(igraph_heap t* h);

Arguments:

h: The heap object.

Returns:
TRUE if the heap is empty, FALSE otherwise.

TIme complexity: O(1).

i graph_heap_ push — Add an element.

i nt igraph_heap_push(igraph_heap t* h, igraph_real t elem;
Adds an element to the heap.

Arguments:

h: The heap object.

el em Theeement to add.

Returns:

Error code.

145

Data structure library: vec-
tor, matrix, other datatypes

Time complexity: O(log n), nisthe number of elementsin the heap if no reallocation is needed, O(n)
otherwise. It is ensured that n push operations are performed in O(n log n) time.

| graph_heap _t op — Top element.

i graph_real _t igraph_heap_top(igraph_heap_t* h);
For maximum heaps this isthe largest, for minimum heaps the smallest element of the heap.
Arguments:

h: The heap object.

Returns:
The top element.

Time complexity: O(1).

| graph_heap_del et e_t op — Return and removes
the top element

i graph_real t igraph_heap _del ete top(igraph_heap t* h);

Removes and returns the top element of the heap. For maximum heapsthisisthe largest, for minimum
heaps the smallest element.

Arguments:

h: The heap object.

Returns:
The top element.

Time complexity: O(log n), nisthe number of elementsin the heap.

| graph_heap_si ze — Number of elements

long int igraph_heap_size(igraph_heap_t* h);
Gives the number of elementsin a heap.
Arguments:

h: The heap object.

Returns:

The number of elementsin the heap.

146

Data structure library: vec-
tor, matrix, other datatypes

Time complexity: O(1).

| graph_heap_reserve — Allocate more memory

int igraph_heap_reserve(igraph_heap_t* h, long int size);

Allocates memory for future use. The size of the heap is unchanged. If the heap is larger than the
Si ze parameter then nothing happens.

Arguments:
h: The heap object.

si ze: Thenumber of elementsto allocate memory for.

Returns:
Error code.

Time complexity: O(si ze) if si ze islarger than the current number of elements. O(1) otherwise.

String vectors

Theigraph_strvector_t typeis avector of strings. The current implementation is very simple and not
too efficient. It works fine for not too many strings, e.g. the list of attribute names is returned in a
string vector by i graph_cattri bute_|i st (). Do notexpect great performance from thistype.

Example 7.12. Fileexanpl es/ si npl e/ i graph_strvector.c

| graph_strvector _init — Initialize

int igraph_strvector_init(igraph_strvector_t *sv, long int len);

Reserves memory for the string vector, a string vector must be first initialized before calling other
functionson it. All elements of the string vector are set to the empty string.

Arguments:
SV: Pointer to an initialized string vector.

| en: The(initial) length of the string vector.

Returns:
Error code.

Time complexity: O(l en).

| graph_strvector_copy — Initialization by copying.

147

Data structure library: vec-
tor, matrix, other datatypes

int igraph_strvector_copy(igraph_strvector_t *to,
const igraph_strvector_t *from;

Initializes a string vector by copying another string vector.
Arguments:
to: Pointer to an uninitialized string vector.

from Theother string vector, to be copied.

Returns:
Error code.

Time complexity: O(l), the total length of the stringsinf r om

| graph_strvector _destroy — Free allocated mem-
ory

voi d igraph_strvector_destroy(igraph_strvector _t *sv);

Destroy a string vector. It may bereinitialized withi gr aph_strvector _i nit () later.
Arguments:

sv: Thestring vector.

Time complexity: O(1), thetotal length of the strings, maybe less depending on the memory manager.

STR— Indexing string vectors

#define STR(sv,i)

This is a macro which alows to query the elements of a string vector in simpler way than
i graph_strvector_get (). Note this macro cannot be used to set an element, for that use
i graph_strvector_set().

Arguments:
sv: Thestring vector

i: The the index of the element.

Returns:
The element at positioni .

Time complexity: O(1).

| graph_strvector _get — Indexing

148

Data structure library: vec-
tor, matrix, other datatypes

voi d igraph_strvector_get(const igraph_strvector_t *sv, long int idx,
char **val ue);

Query an element of a string vector. See also the STR macro for an easier way.

Arguments:
SV: The input string vector.
i dx: Theindex of the element to query.

Poi nter: toachar*, the address of the string is stored here.

Time complexity: O(1).

| graph_strvector_set — Set an element

int igraph_strvector_set(igraph_strvector_t *sv, long int idx,
const char *val ue);

The provided val ue iscopiedinto thei dx position in the string vector.

Arguments:
SV: The string vector.
i dx: The position to set.

val ue: Thenew vaue.

Returns:
Error code.

Time complexity: O(1), the length of the new string. Maybe more, depending on the memory manage-
ment, if reallocation is needed.

| graph_strvector _set 2 — Sets an element.

int igraph_strvector_set2(igraph_strvector_t *sv, long int idx,
const char *value, int len);

Thisisamost the same asi gr aph_strvect or _set, but the new value is not a zero terminated
string, but its length is given.

Arguments:
SV: The string vector.
i dx: The position to set.

val ue: Thenew value.

| en: The length of the new value.

Returns:

149

Data structure library: vec-
tor, matrix, other datatypes

Error code.

Time complexity: O(1), the length of the new string. Maybe more, depending on the memory manage-
ment, if reallocation is needed.

| graph_strvector _renove — Removes a single ele-
ment from a string vector.

voi d igraph_strvector_renove(igraph_strvector_t *v, long int elem;
The string will be one shorter.

Arguments:

V! The string vector.

el em Theindex of the element to remove.

Time complexity: O(n), the length of the string.

| graph_strvector _append — Concatenate two
string vectors.

int igraph_strvector_append(igraph_strvector_t *to,

const igraph_strvector_t *from;
Arguments:
to: Thefirst string vector, the result is stored here.

from Thesecond string vector, it is kept unchanged.

Returns:
Error code.

Time complexity: O(n+l2), n is the number of strings in the new string vector, |12 is the total length
of stringsinthef r omstring vector.

| graph_strvector _cl ear — Remove all elements

void igraph_strvector_clear(igraph_strvector_t *sv);
After this operation the string vector will be empty.

Arguments:

sv: Thestring vector.

Time complexity: O(l), the total length of strings, maybe less, depending on the memory manager.

150

Data structure library: vec-
tor, matrix, other datatypes

| graph_strvector _resize — Resize

int igraph_strvector_resize(igraph_strvector_t* v, long int newsize);

If the new size is bigger then empty strings are added, if it is smaller then the unneeded elements are
removed.

Arguments:
V! The string vector.

newsi ze: Thenew size.

Returns:
Error code.

Time complexity: O(n), the number of stringsif the vector is made bigger, O(l), thetotal length of the
deleted stringsiif it is made smaller, maybe less, depending on memory management.

| graph_strvector _size — Gives the size of a string
vector.

long int igraph_strvector_size(const igraph_strvector t *sv);

Arguments:

sv: Thestring vector.

Returns:
The length of the string vector.
Time complexity: O(1).
| graph_strvect or _add — Adds an element to the
back of a string vector.

int igraph_strvector_add(igraph_strvector_t *v, const char *val ue);

Arguments:
V: The string vector.

val ue: Thestring to add, it will be copied.

Returns:

151

Data structure library: vec-
tor, matrix, other datatypes

Error code.

Time complexity: O(n+l), nisthetotal number of strings, | isthe length of the new string.

Adjacency lists

Sometimes it is easier to work with a graph which isin adjacency list format: alist of vectors; each
vector containsthe neighbor vertices or incident edges of agiven vertex. Typically, thisrepresentation
is good if we need to iterate over the neighbors of all vertices many times. E.g. when finding the
shortest paths between all pairs of vertices or calculating closeness centrality for all the vertices.

Theigraph_adjlist_t storesthe adjacency listsof agraph. After creationit isindependent of the original
graph, it can be modified freely with the usual vector operations, the graph is not affected. E.g. the
adjacency list can be used to rewire the edges of a graph efficiently. If one used the straightforward
i graph_del et e_edges() andi graph_add_edges() combination for thisthat needs O(|V|
+|E|) time for every single deletion and insertion operation, it is thus very slow if many edges are
rewired. Extracting the graph into an adjacency list, do all the rewiring operations on the vectors of the
adjacency list and then creating a new graph needs (depending on how exactly the rewiring is done)
typically O(|V|+|E|) time for the whole rewiring process.

Lazy adjacency lists are a bit different. When creating alazy adjacency list, the neighbors of the ver-
tices are not queried, only some memory is alocated for the vectors. When i gr aph_| azy_ad-
jlist_get() iscaled for vertex v the first time, the neighbors of v are queried and stored in a
vector of the adjacency list, so they don't need to be queried again. Lazy adjacency lists are handy if
you have an at least linear operation (because initialization is generally linear in terms of the number
of vertices), but you don't know how many vertices you will visit during the computation.

Example 7.13. Fileexanpl es/ sinple/adjlist.c

Adjacent vertices

I graph_adjlist_init — Constructs an adjacency list of ver-
tices from a given graph.

int igraph_adjlist_init(const igraph_t *graph, igraph_adjlist_t *al,
i graph_nei node_t node, igraph_l oops_t | oops,
igraph_multiple_t nultiple);

Creates alist of vectors containing the neighbors of al verticesin agraph. The adjacency list isinde-
pendent of the graph after creation, e.g. the graph can be destroyed and modified, the adjacency list
contains the state of the graph at the time of itsinitialization.

Arguments:

graph: Theinput graph.

al : Pointer to an uninitialized igraph_adjlist_t object.

node: Constant specifying whether outgoing (I GRAPH_QOUT), incoming (I GRAPH I N), or
both (I GRAPH_ALL) types of neighborsto include in the adjacency list. It isignored
for undirected networks.

| oops: Specifies how to treat loop edges. | GRAPH_NO_LOOPS removes loop edges from

the adjacency list. | GRAPH_LOOPS_ONCE makes each loop edge appear only once
in the adjacency list of the corresponding vertex. | GRAPH_LOOPS TW CE makes

152

Data structure library: vec-
tor, matrix, other datatypes

loop edges appear twice in the adjacency list of the corresponding vertex, but only if
the graph is undirected or node isset to | GRAPH_ALL.

mul ti ple: Specifies how to treat multiple (parallel) edges. | GRAPH_NO_MJULTI PLE collaps-
es paralel edgesinto asingle one; | GRAPH_MULTI PLE keeps the multiplicities of
parallel edges so the same vertex will appear as many times in the adjacency list of
another vertex as the number of parallel edges going between the two vertices.
Returns:
Error code.
Time complexity: O(|V|+|E]), linear in the number of vertices and edges.
I graph_adjlist _init_enpty — Initializes an empty adjacency
list.

int igraph_adjlist _init_enmpty(igraph_adjlist_t *al, igraph_integer_t no_of node

Creates alist of vectors, one for each vertex. Thisis useful when you are constructing a graph using
an adjacency list representation asit does not require your graph to exist yet.

Arguments:
no_of nodes: Thenumber of vertices

al : Pointer to an uninitialized igraph_adjlist_t object.

Returns:
Error code.
Time complexity: O(|V]), linear in the number of vertices.

i graph_adjlist_init_conpl enent er — Adjacency lists for
the complementer graph.

int igraph_adjlist_init_conplementer(const igraph_t *graph,
igraph_adjlist_t *al,
i graph_nei node_t node,
i graph_bool _t 1 oops);

This function creates adjacency lists for the complementer of the input graph. In the complementer
graph al edges are present which are not present in the original graph. Multiple edges in the input
graph are ignored.

Arguments:
graph: Theinput graph.
al : Pointer to a not yet initialized adjacency list.

node: Constant specifying whether outgoing (I GRAPH_QUT), incoming (I GRAPH_I N), or both
(I GRAPH_ALL) types of neighbors (in the complementer graph) to include in the adja-
cency list. It isignored for undirected networks.

153

Data structure library: vec-
tor, matrix, other datatypes

| oops: Whether to consider loop edges.

Returns:
Error code.

Time complexity: O(|V|*2+|E]), quadratic in the number of vertices.

I graph_adj | i st _destroy — Deallocates an adjacency list.

void igraph_adjlist_destroy(igraph_adjlist_t *al);
Free all memory allocated for an adjacency list.

Arguments:

al : Theadjacency list to destroy.

Time complexity: depends on memory management.

I graph_adjlist_get — Query avector in an adjacency list.

#def i ne igraph_adjlist_get(al, no)

Returns a pointer to an igraph_vector_int_t object from an adjacency list. The vector can be modified
as desired.

Arguments:
al : Theadjacency list object.

no: The vertex whose adjacent vertices will be returned.

Returns:
Pointer to theigraph_vector_int_t object.

Time complexity: O(1).

| graph_adj | i st _si ze — Returns the number of vertices in an
adjacency list.

i graph_integer_t igraph_adjlist_size(const igraph_adjlist_t *al);

Arguments:

al : Theadjacency list.

Returns:

The number of verticesin the adjacency list.

154

Data structure library: vec-
tor, matrix, other datatypes

Time complexity: O(1).

I graph_adjlist_cl ear — Removes all edges from an adjacen-
cy list.

voi d igraph_adjlist_clear(igraph_adjlist_t *al);

Arguments:

al : Theadjacency list. Time complexity: depends on memory management, typically O(n), where
nisthe total number of elementsin the adjacency list.

I graph_adjlist_sort — Sorts each vector in an adjacency list.

void igraph_adjlist_sort(igraph_adjlist_t *al);
Sorts every vector of the adjacency list.

Arguments:

al : Theadjacency list.

Time complexity: O(nlog n), nisthetotal number of elementsin the adjacency list.

I graph_adj list_sinplify— Simplifies an adjacency list.

int igraph_adjlist_sinplify(igraph_adjlist_t *al);
Simplifies an adjacency ligt, i.e. removes loop and multiple edges.
Arguments:

al : Theadjacency list.

Returns:
Error code.

Time complexity: O(|V |+|E]), linear in the number of edges and vertices.

Incident edges

I graph_inclist_init —Initializes an incidence list.

int igraph_inclist_init(const igraph_t *graph,
igraph_inclist t *il,
i graph_nei node_t node,
i graph_| oops_t | oops);

155

Data structure library: vec-
tor, matrix, other datatypes

Createsalist of vectors containing theincident edgesfor all vertices. Theincidencelist isindependent
of the graph after creation, subsequent changes of the graph object do not update the incidence list,
and changes to the incidence list do not update the graph.

When node is| GRAPH_| Nor | GRAPH_QUT, each edge ID will appear in the incidence list once.
Whennode is| GRAPH_ALL, each edge | D will appear in theincidencelist twice, oncefor the source

vertex and

once for the target edge. It also means that the edge IDs of loop edges may potentially

appear twice for the same vertex. Use the | oops argument to control whether this will be the case

(I GRAPH_

LOOPS_TW CE) or not (I GRAPH_LOOPS_ONCE or | GRAPH_NO_LOOPS).

Arguments:

gr aph:
il:

The input graph.

Pointer to an uninitialized incidence list.

node: Constant specifying whether incoming edges (I GRAPH I N), outgoing edges
(I GRAPH_QUT) or both (I GRAPH_ALL) to include in the incidence lists of directed
graphs. It isignored for undirected graphs.

| oops: Specifies how to treat loop edges. | GRAPH_NO L OOPS removes loop edges from the
incidence list. | GRAPH_LOOPS_ONCE makes each loop edge appear only once in the
incidence list of the corresponding vertex. | GRAPH_LOOPS TW CE makes loop edges
appear twice in the incidence list of the corresponding vertex, but only if the graph is
undirected or node issetto | GRAPH _ALL.

Returns:

Error code.

Time complexity: O(|V[+|E]), linear in the number of vertices and edges.

I graph_i ncl
incidence list.

void igr

| st _destroy — Frees all memory allocated for an

aph_inclist_destroy(igraph_inclist_t *il);

Arguments:

eal : Theincidencelist to destroy.

Time comp

I graph_i ncl

#def i ne

lexity: depends on memory management.

| st _get — Query avector in an incidence list.

i graph_inclist _get(il,no)

Returns a pointer to an igraph_vector_int_t object from an incidence list containing edge ids. The
vector can be modified, resized, etc. as desired.

Arguments:

i | : Pointer to the incidence list.

no: Thevertex for which the incident edges are returned.

156

Data structure library: vec-
tor, matrix, other datatypes

Returns:
Pointer to an igraph_vector_int_t object.
Time complexity: O(1).

I graph_inclist_size— Returns the number of vertices in an
incidence list.

i graph_integer_t igraph_inclist_size(const igraph_inclist_t *il);

Arguments:

il: Theincidencelist.

Returns:
The number of verticesin the incidencelist.
Time complexity: O(1).

I graph_i nclist_cl ear — Removes all edges from an inci-
dence list.

void igraph_inclist _clear(igraph_inclist_t *il);

Arguments:
i l: Theincidencelist.

Time complexity: depends on memory management, typically O(n), where n is the total number of
elementsin the incidence list.

Lazy adjacency list for vertices

I graph_lazy _adjlist_init —Initialized a lazy adjacency list.

int igraph_lazy adjlist_init(const igraph_t *graph,
igraph_lazy adjlist _t *al,
i graph_nei node_t node,
i graph_| oops_t | oops,
igraph_multiple_t nultiple);

Create alazy adjacency list for vertices. Thisfunction only allocates some memory for storing the vec-
tors of an adjacency list, but the neighbor vertices are not queried, only at thei gr aph_| azy _ad-
jlist _get() cdls

Arguments:

graph: Theinput graph.

157

Data structure library: vec-
tor, matrix, other datatypes

al : Pointer to an uninitialized adjacency list object.

node: Constant, it gives whether incoming edges (I GRAPH_| N), outgoing edges (I GR-
PAH_QUT) or both types of edges (I GRAPH_ALL) are considered. It isignored for
undirected graphs.

simplify: Constant, it gives whether to simplify the vectors in the adjacency list
(I GRAPH_SI MPLI FY) or not (I GRAPH_DONT_SI MPLI FY).
Returns:
Error code.

Time complexity: O(]V]), the number of vertices, possibly, but depends on the underlying memory
management too.

I graph_lazy adjlist_destroy — Deallocate a lazt adjacency
list.

void igraph_lazy adjlist _destroy(igraph_ lazy adjlist_t *al);
Free all alocated memory for alazy adjacency list.

Arguments:

al : Theadjacency list to deallocate.

Time complexity: depends on the memory management.

I graph_lazy adjlist _get — Query neighbor vertices.

#define igraph_lazy _adjlist_get(al, no)

If the function is called for the first time for a vertex then the result is stored in the adjacency list and
no further query operations are needed when the neighbors of the same vertex are queried again.

Arguments:
al : Thelazy adjacency list.

no: Thevertex ID to query.

Returns:
Pointer to avector. It is allowed to modify it and modification does not affect the original graph.

Time complexity: O(d), the number of neighbor vertices for the first time, O(1) for subsequent calls.

I graph_lazy adjlist_size— Returns the number of vertices
in a lazy adjacency list.

igraph_integer t igraph_lazy adjlist_size(const igraph_lazy adjlist_t *al);

158

Data structure library: vec-
tor, matrix, other datatypes

Arguments:

al : Thelazy adjacency list.

Returns:
The number of verticesin the lazy adjacency list.
Time complexity: O(1).

I graph_lazy adjlist_cl ear — Removes all edges from a lazy
adjacency list.

void igraph_lazy adjlist_clear(igraph_lazy adjlist_t *al);

Arguments:

al . Thelazy adjacency list. Time complexity: depends on memory management, typically O(n),
where n isthe total number of elementsin the adjacency list.

Lazy incidence list for edges

I graph_lazy _inclist_init —Initializes alazy incidence list of
edges.

int igraph_lazy inclist_init(const igraph_t *graph,
igraph_lazy inclist t *il,
i graph_nei node_t node,
i graph_| oops_t | oops);

Create alazy incidence list for edges. This function only allocates some memory for storing the vec-
tors of an incidence list, but the incident edges are not queried, only when i graph_| azy i n-
clist_get() iscaled.

When node is| GRAPH_| Nor | GRAPH_QUT, each edge ID will appear in the incidence list once.
Whennode isl GRAPH_ALL, each edge|D will appear in theincidencelist twice, oncefor the source
vertex and once for the target edge. It also means that the edge I1Ds of loop edges will appear twice
for the same vertex.

Arguments:

graph: Theinput graph.

al : Pointer to an uninitialized incidence list.

node: Constant, it gives whether incoming edges (I GRAPH I N), outgoing edges
(I GRAPH_QUT) or both types of edges (| GRAPH_ALL) are considered. It isignored for
undirected graphs.

| oops: Specifies how to treat loop edges. | GRAPH_NO_LOOPS removes loop edges from the
incidence list. | GRAPH_LOOPS ONCE makes each loop edge appear only once in the
incidence list of the corresponding vertex. | GRAPH_LOOPS TW CE makes loop edges

159

Data structure library: vec-
tor, matrix, other datatypes

appear twice in the incidence list of the corresponding vertex, but only if the graph is
undirected or node issetto | GRAPH_ALL.
Returns:
Error code.

Time complexity: O(|V|), the number of vertices, possibly. But it also depends on the underlying
memory management.

I graph_lazy inclist _destroy — Deallocates alazy incidence
list.

void igraph_lazy inclist _destroy(igraph_lazy inclist t *il);
Frees all alocated memory for alazy incidence list.

Arguments:

al : Theincidence list to deallocate.

Time complexity: depends on memory management.

I graph_lazy inclist_get — Query incident edges.

#define igraph_lazy inclist_get(al, no)

If the function is called for the first time for a vertex, then the result is stored in the incidence list and
no further query operations are needed when the incident edges of the same vertex are queried again.

Arguments:
al : Thelazy incidencelist object.

no: Thevertexidto query.

Returns:
Pointer to avector. It is allowed to modify it and modification does not affect the original graph.

Time complexity: O(d), the number of incident edges for thefirst time, O(1) for subsequent callswith
the same no argument.

I graph_lazy inclist_size—Returns the number of vertices
in a lazy incidence list.

i graph_integer t igraph_lazy inclist_size(const igraph_lazy inclist_t

Arguments:

il: Thelazy incidencelist.

160

HADE

Data structure library: vec-
tor, matrix, other datatypes

Returns:
The number of verticesin the lazy incidencelist.
Time complexity: O(1).

I graph_lazy inclist_clear — Removes all edges from a lazy
incidence list.

void igraph_lazy_inclist_clear(igraph_lazy_ inclist_t *il);

Arguments:
il: Thelazy incidencelist.

Time complexity: depends on memory management, typicaly O(n), where n is the total number of
elementsin the incidence list.

Partial prefix sum trees

The igraph_psumtree t data type represents a partial prefix sum tree. A partial prefix sum treeis a
data structure that can be used to draw samples from a discrete probability distribution with dynamic
probabilities that are updated frequently. Thisis achieved by creating a binary tree where the leaves
aretheitems. Each leaf contains the probability corresponding to the items. Intermediate nodes of the
tree always contain the sum of its two children. When the value of aleaf node is updated, the values
of its ancestors are also updated accordingly.

Samples can be drawn from the probability distribution represented by the tree by generating a uni-
form random number between O (inclusive) and the value of the root of the tree (exclusive), and then
following the branches of the tree as follows. In each step, the value in the current node is compared
with the generated number. If the value in the node is larger, the left branch of the tree is taken; oth-
erwise the generated number is decreased by the value in the node and the right branch of thetreeis
taken, until aleaf node is reached.

Notethat the sampling processworksonly if all thevaluesin thetree are non-negative. Thisisenforced
by the object; in particular, trying to set a negative value for an item will produce an igraph error.

| graph_psuntree_init — Initializes a partial prefix
sum tree.

int igraph_psuntree_init(igraph_psumtree t *t, long int size);

The tree is initialized with a fixed number of elements. After initiaization, the value corresponding
to each element is zero.

Arguments:

t: Thetreetoinitialize

si ze: Thenumber of e ementsin the tree

Returns:

161

Data structure library: vec-
tor, matrix, other datatypes

Error code, typicaly | GRAPH _ENOVEMIf there is not enough memory

Time complexity: O(n) for atree containing n elements

| graph_psunt ree_destr oy — Destroys a partial pre-
fix sum tree.

voi d igraph_psuntree_destroy(igraph_psumree_ t *t);

All partia prefix sum trees initialized by i gr aph_psuntree_i ni t () should be properly de-
stroyed by thisfunction. A destroyed tree needsto bereinitialized by i gr aph_psuntree_i nit ()
if you want to use it again.

Arguments:

t: Pointer to the (previoudly initialized) tree to destroy.

Time complexity: operating system dependent.

| graph_psuntree_si ze — Returns the size of the
tree.

long int igraph_psuntree_size(const igraph_psumree_t *t);

Arguments:

t: Thetreeobject

Returns:
The number of discreteitemsin the tree.
Time complexity: O(1).

| graph_psuntree_get — Retrieves the value corre-
sponding to an item in the tree.

i graph_real t igraph_psuntree_get(const igraph psuntree t *t, long int idx);

Arguments:
t: Thetree to query.

i dx: Theindex of theitem whose value is to be retrieved.

Returns:

162

Data structure library: vec-
tor, matrix, other datatypes

The value corresponding to the item with the given index.

Time complexity: O(1)

| graph_psunt ree_sum— Returns the sum of the val-
ues of the leaves in the tree.

i graph_real t igraph_psuntree_sumconst igraph_psuntree t *t);

Arguments:

t: Thetreeobject

Returns:
The sum of the values of the leavesin the tree.

Time complexity: O(1).

| graph_psunt ree_search — Finds an item in the
tree, given a value.

int igraph_psuntree_search(const igraph_psumree_t *t, long int *idx,
i graph_real t search);

This function finds the item with the lowest index where it holds that the sum of all the items with a
lower index islessthan or equal to the given value and that the sum of all the itemswith alower index
plustheitem itself islarger than the given value.

If you think about the partial prefix sum tree as a tool to sample from a discrete probability distrib-
ution, then calling this function repeatedly with uniformly distributed random numbers in the range
0 (inclusive) to the sum of all values in the tree (exclusive) will sample the items in the tree with a
probability that is proportional to their associated values.

Arguments:
t: Thetree to query.
i dx: Theindex of theitem is returned here.

search: Thevalueto usefor the search.

Returns:
Error code; currently the search always succeeds.

Time complexity: O(log n), where n is the number of itemsin the tree.

| graph_psunt ree_updat e — Updates the value as-
sociated to an item in the tree.

163

Data structure library: vec-
tor, matrix, other datatypes

i nt igraph_psuntree_update(igraph_psuntree_t *t, long int idx,
i graph_real _t new val ue);

Arguments:

t: Thetreeto query.

i dx: Theindex of the item to update.

new val ue: Thenew value of theitem.

Returns:

Error code, | GRAPH_EI NVAL if the new value is negative or NaN, | GRAPH_SUCCESS if the
operation was successful.

Time complexity: O(log n), where n is the number of itemsin the tree.

164

Chapter 8. Random numbers

About random numbers in igraph, use cases

Some algorithms in igraph, e.g. the generation of random graphs, require random number generators
(RNGS). Prior to version 0.6 igraph did not have a sophisticated way to deal with random number
generatorsat the C level, but thishas changed. From version 0.6 different and multiple random number
generators are supported.

The default random number generator

| graph_rng_default — Query the default random
number generator.

igraph_rng_t *igraph_rng default();

Returns:

A pointer to the default random number generator.

See also:

igraph_rng_set_default()

| graph_rng_set default — Set the default igraph
random number generator.

void igraph_rng _set _default(igraph_rng t *rng);

Arguments:

rng: Therandom number generator to use as default from now on. Callingi graph_rng_de-
stroy() onit, whileitistill being used as the default will result in crashes and/or unpre-
dictable results.

Time complexity: O(1).

Creating random number generators

I graph_rng_i nit — Initialize arandom number gen-
erator.

int igraph_rng_init(igraph_rng_t *rng, const igraph_rng type t *type);

165

Random numbers

This function allocates memory for arandom number generator, with the given type, and setsits seed
to the defaullt.

Arguments:
rng: Pointer to an uninitialized RNG.
type: The type of the RNG, like igraph _rngtype glibc2, igraph_rng-
type_mt 19937 ori gr aph_r ngt ype_r and.
Returns:
Error code.

Time complexity: depends on the type of the generator, but usually it should be O(1).

| graph_rng_dest roy — Deallocate memory associ-
ated with arandom number generator.

void igraph_rng _destroy(igraph_ rng t *rng);

Arguments:
rng: TheRNG to destroy. Do not destroy an RNG that is used as the default igraph RNG.

Time complexity: O(1).

| graph_rng_seed — Set the seed of arandom num-
ber generator.

int igraph_rng_seed(igraph_rng_t *rng, unsigned long int seed);

Arguments:
rng: The RNG.
seed: Thenew seed.

Returns:
Error code.

Time complexity: usualy O(1), but may depend on the type of the RNG.

| graph_rng_m n — Query the minimum possible inte-
ger for arandom number generator.

unsi gned long int igraph_rng_m n(igraph_rng_t *rng);

166

Random numbers

Arguments:

rng: TheRNG.

Returns:

The smallest possible integer that can be generated by callingi gr aph_rng_get _i nt eger ()
onthe RNG.

Time complexity: O(1).

i graph_rng_nmax — Query the maximum possible in-
teger for arandom number generator.

unsi gned long int igraph rng_max(igraph_rng t *rng);

Arguments:

rng: TheRNG.

Returns:

The largest possible integer that can be generated by calling i gr aph_rng_get i nt eger ()
on the RNG.

Time complexity: O(1).

| graph_rng_nane — Query the type of arandom
number generator.

const char *igraph_rng_nane(igraph_rng_t *rng);

Arguments:

rng: TheRNG.

Returns:
The name of the type of the generator. Do not deall ocate or change the returned string pointer.

Time complexity: O(1).

Generating random numbers

| graph_rng _get i nteger — Generate an integer
random number from an interval.

167

Random numbers

long int igraph_rng_get_integer(igraph_rng_t *rng,
long int |, long int h);
Arguments:

rng: Pointer to the RNG to use for the generation. Usei gr aph_r ng_def aul t () hereto use
the default igraph RNG.

l: Lower limit, inclusive, it can be negative as well.

h: Upper limit, inclusive, it can be negative as well, but it should be at least | .

Returns:
The generated random integer.

Time complexity: depends on the generator, but should be usually O(21).

| graph_rng_get uni f — Generate real, uniform ran-
dom numbers from an interval

i graph_real _t igraph_rng _get_unif(igraph_rng_t *rng,
igraph_real t |, igraph_real _t h);
Arguments:

rng: Pointer to the RNG to use. Usei gr aph_rng_def aul t () hereto use the default igraph
RNG.

l: The lower bound, it can be negative.

h: The upper bound, it can be negative, but it has to be larger than the lower bound.

Returns:
The generated uniformly distributed random number.

Time complexity: depends on the type of the RNG.

i graph_rng_get uni f01l — Generate real, uniform
random number from the unit interval

i graph_real _t igraph_rng_get_unif01(igraph_rng_t *rng);

Arguments:

rng: Pointer to the RNG to use. Usei gr aph_r ng_def aul t () hereto use the default igraph
RNG.

Returns:

The generated uniformly distributed random number.

168

Random numbers

Time complexity: depends on the type of the RNG.

i graph_rng_get normal — Normally distributed ran-
dom numbers

i graph_real _t igraph_rng_get_normal (igraph_rng_t *rng,
igraph_real _t m igraph_real_t s);

Arguments:

rng: Pointer to the RNG to use. Usei gr aph_rng_def aul t () hereto use the default igraph

RNG.
m The mean.
S: Standard deviation.
Returns:

The generated normally distributed random number.

Time complexity: depends on the type of the RNG.

i graph_rng_get geom— Generate geometrically dis-
tributed random numbers

i graph_real _t igraph_rng _get_geom(igraph_rng_t *rng, igraph_real _t p);

Arguments:

rng: Pointer to the RNG to use. Usei gr aph_r ng_def aul t () hereto use the default igraph

RNG.
p: The probability of successin each trial. Must be larger than zero and smaller or equal to 1.
Returns:

The generated geometrically distributed random number.

Time complexity: depends on the type of the RNG.

| graph_rng_get bi nom— Generate binomially dis-
tributed random numbers

i graph_real t igraph_rng get binonm(igraph rng t *rng, long int n,
i graph_real t p);

Arguments:

169

Random numbers

rng: Pointer to the RNG to use. Usei gr aph_r ng_def aul t () hereto use the default igraph

RNG.
n: Number of observations.
p: Probability of an event.
Returns:

The generated binomially distributed random number.

Time complexity: depends on the type of the RNG.

| graph_rng_get ganma — Generate sample from a
Gamma distribution

i graph_real t igraph_rng get ganma(igraph_rng t *rng, igraph_real t shape,
i graph _real t scale);

Arguments:
rng: Pointer totheRNG touse. Usei gr aph_r ng_def aul t () heretousethedefaultigraph
RNG.

shape: Shape parameter.

scal e: Scale parameter.

Returns:
The generated sample

Time complexity: depends on RNG.

Supported random number generators

By default igraph uses the MT19937 generator. Prior to igraph version 0.6, the generator supplied
by the standard C library was used. This means the GLIBC2 generator on GNU libc 2 systems, and
maybe the RAND generator on others.

| graph_rngtype nt 19937 — The MT19937 random
number generator.

const igraph_rng type t igraph_rngtype nt 19937 = {

/* name= */ "Mri19937",

/[* min= */ 0,

/[* max= */ OxffffffffUL,

[* init=*/ i graph_rng_nt 19937 init,

/* destroy= */ i graph_rng_nt 19937 _destroy,
/* seed= */ i graph_rng_nt 19937 _seed,

/* get= */ i graph_rng_nt 19937 get,

170

Random numbers

/* get_real= */ igraph_rng_m 19937 get_real,
/* get_norm= */ O,
/* get_geonm= */ O,
/* get_binom= */ O,
[* get_exp= */ 0,
/* get_gamm= */ 0

b

The MT19937 generator of Makoto Matsumoto and Takuji Nishimurais avariant of the twisted gen-
eralized feedback shift-register algorithm, and is known as the “Mersenne Twister” generator. It has
a Mersenne prime period of 2219937 - 1 (about 10"6000) and is equi-distributed in 623 dimensions.
It has passed the diehard statistical tests. It uses 624 words of state per generator and is comparable
in speed to the other generators. The original generator used a default seed of 4357 and choosing s
equal to zeroingsl _rng_set reproducesthis. Later versions switched to 5489 as the default seed,
you can choose this explicitly viai gr aph_r ng_seed() instead if you requireiit.

For more information see, Makoto Matsumoto and Takuji Nishimura, “Mersenne Twister: A 623-di-
mensionally equidistributed uniform pseudorandom number generator”. ACM Transactions on Mod-
eling and Computer Simulation, Vol. 8, No. 1 (Jan. 1998), Pages 3-30

The generator i gr aph_r ngt ype_nt 19937 uses the second revision of the seeding procedure
published by the two authors above in 2002. The original seeding procedures could cause spurious
artifacts for some seed values.

This generator was ported from the GNU Scientific Library.

| graph_rngtype _glibc2 — The random number
generator introduced in GNU libc 2.

const igraph_rng_type_t igraph_rngtype_glibc2 = {

/* name= */ "LI BC",

[* min= */ 0,

[* max= */ Ox7fffffffUL,

[* init= */ i graph_rng_glibc2_init,

[* destroy= */ i graph_rng_glibc2_destroy,
[* seed= */ i graph_rng_glibc2_seed,

[* get= */ i graph_rng_glibc2_get,

/* get_real= */ igraph_rng_glibc2_get_real,
/* get_norm= */ O,
/* get_geom= */ O,
/* get _binom= */ O,
/[* get_exp= */ 0,
/* get_gamma= */ 0

b

Thisisalinear feedback shift register generator with a 128-byte buffer. This generator was the default
prior to igraph version 0.6, at least on systems relying on GNU libc. This generator was ported from
the GNU Scientific Library. It is areimplementation and does not call the system glibc generator.

i graph_rngtype_rand — The old BSD rand/srand
random number generator.

const igraph_rng type t igraph_rngtype rand = {

171

Random numbers

[* name= */ "RAND" ,

[* mn= */ 0,

[* max= */ Ox7fffffffUL,

[* init=*/ igraph_rng_rand_init,

/* destroy= */ i graph_rng_rand_destroy,
/* seed= */ i graph_rng_rand_seed,

/[* get= */ i graph_rng_rand_get,

/* get_real= */ igraph_rng_rand_get_real,
/* get_norm= */ O,
/* get_geonm= */ O,
/* get_binom= */ O,
[* get_exp= */ 0,
/* get_gamm= */ 0

b

Thesequenceisx_{n+1} = (a x_n + c¢) nod mwitha = 1103515245,c = 12345
andm = 2731 = 2147483648. The seed specifiestheinitial value, x_1.

Thetheoretical value of x_{ 10001} is1910041713.
The period of this generator is 2"31.
This generator is not very good—the low bits of successive numbers are correlated.

This generator was ported from the GNU Scientific Library.

Use cases

Normal (default) use

If the user does not use any of the RNG functions explicitly, but calls some of the randomized igraph
functions, then a default RNG is set up the first time an igraph function needs random numbers. The
seed of this RNG is the output of the t i me(0) function call, using the ti ne function from the
standard C library. Thisensuresthat igraph creates a different random graph, each time the C program
iscaled.

The created default generator is stored internally and can be queried with the i gr aph_r ng_de-
faul t () function.

Reproducible simulations

If reproducible results are needed, then the user should set the seed of the default random num-
ber generator explicitly, using the i graph_rng_seed() function on the default generator,
i graph_rng_defaul t (). When setting the seed to the same number, igraph generates exactly
the same random graph (or series of random graphs).

Changing the default generator

By default igraph uses the i gr aph_r ng_def aul t () random number generator. This can be
changed any time by callingi gr aph_rng_set _def aul t (), with an already initialized random
number generator. Notethat the old (replaced) generator isnot destroyed, so no memory isdeall ocated.

Using multiple generators

igraph also provides functions to set up multiple random number generators, using the
i graph_rng_init() function, and then generating random numbers from them, e.g. with
i graph_rng_get _integer() andlori graph_rng_get unif () cals.

172

Random numbers

Note that initializing a new random number generator is independent of the generator that the igraph
functions themselves use. If you want to replace that, then please use i gr aph_rng_set _de-
fault ().

Example

Example 8.1. Fileexanpl es/ si npl e/ random seed. c

173

Chapter 9. Graph generators

Graph generators create graphs.

Almost al functions which create graph objects are documented here. The exceptions are
i graph_i nduced_subgr aph() and alike, these create graphs based on another graph.

Deterministic graph generators

| graph_cr eat e — Creates a graph with the specified
edges.

int igraph_create(igraph_t *graph, const igraph_vector_t *edges,
i graph_integer_t n, igraph_bool t directed);

Arguments:

graph: An uninitialized graph object.

edges: The edges to add, the first two elements are the first edge, etc.

n: The number of verticesin the graph, if smaller or equal to the highest vertex id in the

edges vector it will beincreased automatically. So it is safe to give O here.

di rected: Boolean, whether to create a directed graph or not. If yes, then the first edge points
from the first vertex id in edges to the second, etc.

Returns:

Error code: | GRAPH EI NVEVECTOR: invalid edges vector (odd number of vertices).
| GRAPH_EI NwVI D: invalid (negative) vertex id.

Time complexity: O(|V|+|E]), [V| isthe number of vertices, [E| the number of edgesin the graph.

Example9.1. Fileexanpl es/ si npl e/ i graph_create.c

| graph_smal | — Shorthand to create a small graph,
giving the edges as arguments.

int igraph_small (igraph_t *graph, igraph_integer_t n, igraph_bool _t directed,
R I

This function is handy when arelatively small graph needs to be created. Instead of giving the edges
as avector, they are given simply as arguments and a'-1' needs to be given after the last meaningful
edge argument.

Note that only graphs which have vertices less than the highest value of the 'int' type can be created
thisway. If you give larger values then the result is undefined.

174

Graph generators

Arguments:
graph: Pointer to an uninitialized graph object. The result will be stored here.
n: The number of verticesin the graph; a nonnegative integer.

di rected: Logical constant; gives whether the graph should be directed. Supported values are:
| GRAPH_DI RECTED The graph to be created will be directed.
| GRAPH_UNDI RECTED The graph to be created will be undirected.
The additional arguments giving the edges of the graph. Don't forget to supply an
additional '-1' after the last (meaningful) argument.
Returns:
Error code.

Time complexity: O(|V|+|E|), the number of vertices plus the number of edgesin the graph to create.

Example 9.2. Fileexanpl es/ si npl e/igraph_small.c

| gr aph_adj acency — Creates a graph from an adja-
cency matrix.

i nt igraph_adjacency(igraph_t *graph, igraph_matrix_t *adjmatri x,
i graph_adj acency_t node);

The order of the vertices in the matrix is preserved, i.e. the vertex corresponding to the first row/
column will be vertex with id O, the next row isfor vertex 1, etc.

Arguments:
gr aph: Pointer to an uninitialized graph object.
adj matri x: Theadjacency matrix. How it isinterpreted depends on the node argument.

node: Constant to specify how the given matrix is interpreted as an adjacency matrix. Pos-
siblevalues (A(i,j) isthe element in row i and column j in the adjacency matrix ad-
jmatrix):

| GRAPH_ADJ_DI RECTED thegraph will bedirected and an element givesthe
number of edges between two vertices.

| GRAPH_ADJ UNDI RECTED thisisthe same as| GRAPH_ADJ_MAX, for con-

venience.

| GRAPH_ADJ _MAX undirected graph will be created and the number
of edges between vertices i and j is max(A(i,)),
A1)

| GRAPH_ADJ_M N undirected graph will be created with min(A(i,j),

A(j,i)) edges between verticesi and j.

| GRAPH_ADJ_PLUS undirected graph will be created with A(i,j)+A(j,i)
edges between verticesi and j.

175

Graph generators

| GRAPH_ADJ _UPPER undirected graph will be created, only the upper
right triangle (including the diagonal) is used for
the number of edges.

| GRAPH_ADJ LOVER undirected graph will be created, only the lower
left triangle (including the diagonal) is used for
creating the edges.

Returns:

Error code, | GRAPH_NONSQUARE: non-square matrix.

Time complexity: O(|V||V]), |V| is the number of verticesin the graph.

Example 9.3. Fileexanpl es/ si npl e/ i graph_adj acency. c

| graph_wei ght ed_adj acency — Creates a graph

from a weighted adjacency matrix.

i nt

i graph_wei ght ed_adj acency(i graph_t

*graph, igraph_matrix_t *adjmatrix,
i graph_adj acency_t node,
i graph_bool _t | oops);

const char* attr,

The order of the vertices in the matrix is preserved, i.e. the vertex corresponding to the first row/
column will be vertex with id O, the next row isfor vertex 1, etc.

The weighted adjacency matrix. How it is interpreted depends on the node argu-

ment. The common feature is that edges with zero weights are considered nonexis-

Arguments:
gr aph: Pointer to an uninitialized graph object.
adj matri x:
tent (however, negative weights are permitted).
node:

Constant to specify how the given matrix isinterpreted as an adjacency matrix. Pos-

siblevalues (A(i,j) isthe element in row i and column j in the adjacency matrix ad-

j mat ri x):

| GRAPH_ADJ_DI RECTED thegraph will bedirected and an element givesthe
weight of the edge between two vertices.

| GRAPH_ADJ UNDI RECTED thisisthe same as| GRAPH_ADJ_MAX, for con-

venience.
I GRAPH_ADJ _MAX undirected graph will be created and the weight
of the edge between verticesi and j is max(A(i,j),
| GRAPH_ADJ M N undirected graph will be created with edge weight

min(A(i,j), A(j,i)) between verticesi and j.

| GRAPH_ADJ_ PLUS undirected graph will be created with edge weight
A(i,j)+A(,i) between verticesi and j.

176

Graph generators

| GRAPH_ADJ _UPPER undirected graph will be created, only the upper
right triangle (including the diagonal) is used for
the edge weights.
| GRAPH_ADJ LOWER undirected graph will be created, only the lower
left triangle (including the diagonal) is used for
the edge weights.
attr: the name of the attribute that will store the edge weights. If NULL , it will use
wei ght asthe attribute name.
| oops: Logical scalar, whether to ignore the diagonal elements in the adjacency matrix.
Returns:

Error code, | GRAPH_NONSQUARE: non-square matrix.

Time complexity: O(|V||V]), |V| is the number of vertices in the graph.

Example9.4. Fileexanpl es/ si npl e/ i graph_wei ght ed_adj acency. c

| graph_adj | i st — Creates a graph from an adjacen-
cy list.

int igraph_adjlist(igraph_t *graph, const igraph_adjlist_t *adjlist,
i graph_nei node_t node, igraph_bool t duplicate);

Anadjacency listisalist of vectors, containing the neighborsof all vertices. For operationsthat involve
many changes to the graph structure, it is recommended that you convert the graph into an adjacency
list viai graph_adj i st _init (), perform the modifications (these are cheap for an adjacency
list) and then recreate the igraph graph via this function.

Arguments:

graph: Pointer to an uninitialized graph object.

adj list: The adjacency list.

node: Whether or not to create adirected graph. | GRAPH_ALL meansan undirected graph,

I GRAPH_QUT means adirected graph from an out-adjacency list (i.e. each list con-
tains the successors of the corresponding vertices), | GRAPH | N means a directed
graph from an in-adjacency list

duplicate: Logical, for undirected graphsthis specified whether each edgeisincluded twice, in
the vectors of both adjacent vertices. If thisisfalse (0), then it is assumed that every
edge isincluded only once. This argument isignored for directed graphs.

Returns:

Error code.

See also:

177

Graph generators

i graph_adjlist_init() fortheopposite operation.
Time complexity: O(|V|+|E]).

| graph_st ar — Creates a star graph, every vertex
connects only to the center.

int igraph_star(igraph_t *graph, igraph_integer_t n, igraph_star_node_t node,
i graph_integer_t center);

Arguments:

gr aph: Pointer to an uninitialized graph object, thiswill be the result.

n: Integer constant, the number of verticesin the graph.
node: Constant, gives the type of the star graph to create. Possible values:
| GRAPH_STAR _OQUT directed star graph, edges point fromthe center to the
other vertices.
| GRAPH_STAR I N directed star graph, edges point to the center from the
other vertices.
| GRAPH_STAR MUTUAL directed star graph with mutual edges.

| GRAPH_STAR_UNDI RECTED an undirected star graph is created.

center: Idof thevertex which will be the center of the graph.

Returns:

Error code:

| GRAPH_EI NwWI D invalid number of vertices.

| GRAPH_EI NVAL invalid center vertex.

| GRAPH_EI NVMODE invalid mode argument.
Time complexity: O(|V]), the number of vertices in the graph.
See also:

igraph_lattice(),igraph_ring(),igraph_tree() for creating other regular struc-
tures.

Example 9.5. Fileexanpl es/ si npl e/ i graph_star.c

| graph_l atti ce — Arbitrary dimensional square lat-
tices.

178

Graph generators

int igraph_lattice(igraph_t *graph, const igraph_vector_t *dinvector,
i graph_integer_t nei, igraph_bool _t directed, igraph_bool t
i graph_bool _t circular);

Creates d-dimensional square lattices of the given size. Optionally, the lattice can be made periodic,
and the neighbors within a given graph distance can be connected.

In the zero-dimensional case, the singleton graph is returned.

The vertices of the resulting graph are ordered such that the index of the vertex at position (i _0,
i1, i_2, ..., i_d) inalatticeof size(n_0, n_1, ..., n_d) willbei_0 + n_0
*iP 1 +n0*n1*i_2+....

Arguments:

gr aph: An uninitialized graph object.

di mvector: Vector giving the sizes of the lattice in each of its dimensions. The dimension of the
lattice will be the same as the length of this vector.

nei : Integer value giving the distance (number of steps) within which two vertices will
be connected.
di r ect ed: Boolean, whether to create a directed graph. If the nut ual andci r cul ar argu-

ments are not set to true, edges will be directed from lower-index vertices towards
higher-index ones.

mut ual : Boolean, if the graph is directed this gives whether to create all connections as mu-
tual.

circul ar: Boolean, defines whether the generated lattice is periodic.

Returns:

Error code: | GRAPH_EI NVAL: invalid (negative) dimension vector.

Time complexity: If nei islessthantwothenitis O(|V|+|E]) (asfar as| remember), [V|and |E| arethe
number of vertices and edges in the generated graph. Otherwise it is O(|V [* d*k+|E]), d is the average
degree of the graph, k isthe nei argument.

i graph_ri ng — Creates aring graph, a one dimen-
sional lattice.

int igraph_ring(igraph_t *graph, igraph_integer_t n, igraph_bool _t directed,
i graph_bool t mutual, igraph_bool t circular);

An undirected (circular) ring on n verticesiscommonly known in graph theory asthe cyclegraph C _n.

Arguments:
gr aph: Pointer to an uninitialized graph object.
n: The number of verticesin thering.

di rected: Logical, whether to create a directed ring.

nut ual : Logical, whether to create mutual edgesin adirected ring. It isignored for undirected
graphs.

179

Graph generators

circul ar: Logical, if fase, thering will be open (thisisnot areal ring actually).

Returns:

Error code: | GRAPH_EI NVAL: invalid number of vertices.
Time complexity: O(JV]), the number of vertices in the graph.
See also:

i graph_l attice() for generating more general lattices.

Example 9.6. Fileexanpl es/ si npl e/igraph_ring.c

| graph_tree — Creates atree in which almost all ver-
tices have the same number of children.

int igraph_tree(igraph_t *graph, igraph_integer_t n, igraph_integer_t children,
i graph_tree_node_t type);

Arguments:
graph: Pointer to an uninitialized graph object.
n: Integer, the number of vertices in the graph.

chi I dren: Integer, the number of children of avertex in the tree.

type: Constant, gives whether to create a directed tree, and if thisisthe case, also its orien-
tation. Possible values:

| GRAPH_TREE_QUT directed tree, the edges point from the parents to
their children,

| GRAPH_TREE_| N directed tree, the edges point from the children to
their parents.

| GRAPH_TREE_UNDI RECTED undirected tree.

Returns:

Error code: | GRAPH_EI NVAL.: invalid number of vertices. | GRAPH_| NVMODE: invalid mode
argument.

Time complexity: O(|V|+|E]), the number of vertices plus the number of edgesin the graph.
See also:

igraph_lattice(), igraph_star() for -creating other regular structures;
i graph_from prufer() for creating arbitrary trees; i gr aph_t ree_gane() for uniform
random sampling of trees.

Example 9.7. Fileexanpl es/ si npl e/ i graph_tree.c

180

Graph generators

i graph_full — Creates a full graph (directed or undi-
rected, with or without loops).

int igraph_full(igraph_t *graph, igraph_integer_t n, igraph_bool t directed,
i graph_bool t | oops);

In afull graph every possible edge is present, every vertex is connected to every other vertex. A full
graphini gr aph should be distinguished from the concept of complete graphsasused in graph theory.
If nis apositive integer, then the complete graph K_n on n vertices is the undirected simple graph
with the following property. For any distinct pair (u,v) of verticesin K_n, uv (or equivalently vu) is
anedgeof K_n.Ini graph, afull graph on nvertices can be K_n, adirected version of K_n, or K_n
with at least one loop edge. In any case, if Fisafull graph on n vertices as generated by i gr aph,
then K_nisasubgraph of the undirected version of F.

Arguments:
gr aph: Pointer to an uninitialized graph object.
n: Integer, the number of vertices in the graph.

di rected: Logical, whether to create adirected graph.

| oops: Logical, whether to include self-edges (loops).

Returns:
Error code: | GRAPH_EI NVAL.: invalid number of vertices.

Time complexity: O(V|+|E]), V| is the number of vertices, |E| the number of edges in the graph. Of
course thisis the same as O(|E[)=O(|V||V|) here.

See also:

igraph_lattice(),igraph_star(),igraph_tree() for creating other regular struc-
tures.

Example 9.8. Fileexanpl es/ si npl e/igraph_full.c

i graph_full _citation— Creates a full citation
graph

int igraph_full _citation(igraph_t *graph, igraph_integer_t n,
i graph_bool _t directed);

This is a directed graph, where every i - >j edgeis present if and only if j <i . If thedi rect ed
argument is zero then an undirected graph is created, and it is just afull graph.

Arguments:

graph: Pointer to an uninitialized graph object, the result is stored here.

181

Graph generators

n: The number of vertices.

di rected: Whether to created adirected graph. If zero an undirected graph is created.

Returns:
Error code.

Time complexity: O(|V|2), as we have many edges.

i graph_realize degree_sequence — Generates a
graph with the given degree sequence.

int igraph_realize_degree_sequence(
i graph_t *graph,
const igraph_vector_t *outdeg, const igraph_vector_t *indeg,
i graph_edge_type_sw t all owed_edge_types,
i graph_realize_degseq_t method);

This function generates an undirected graph that realizes a given degree sequence, or a directed graph
that realized a given pair of out- and in-degree sequences.

Simple undirected graphs are constructed using the Havel-Hakimi algorithm (undirected case), or the
anal ogous Kleitman-Wang a gorithm (directed case). These algorithmswork by choosing an arbitrary
vertex and connecting al its stubs to other vertices of highest degree. In the directed case, the "high-
est" (in, out) degree pairs are determined based on lexicographic ordering. This step is repeated until
all degrees have been connected up.

L oopless multigraphs are generated using an analogous algorithm: an arbitrary vertex is chosen, and
it is connected with a single connection to a highest remaining degee vertex. If self-loops are also
allowed, the same algorithm is used, but if a non-zero vertex remains at the end of the procedure, the
graph is completed by adding self-loops to it. Thus, the result will contain at most one vertex with
self-loops.

The net hod parameter controls the order in which the vertices to be connected are chosen.
References:

V. Havel, Pozndmka o existenci kone#tnych graf# (A remark on the existence of finite graphs), #asopis
pro p#stovani matematiky 80, 477-480 (1955). http://eudml.org/doc/19050

S. L. Hakimi, On Realizability of a Set of Integers as Degrees of the Vertices of a Linear Graph,
Journal of the SIAM 10, 3 (1962). https://www.jstor.org/stable/2098746

D. J. Kleitman and D. L. Wang, Algorithms for Constructing Graphs and Digraphs with Giv-
en Valences and Factors, Discrete Mathematics 6, 1 (1973). https.//doi.org/10.1016/0012-365X
%2873%2990037-X

Sz. Horvét and C. D. Modes, Connectivity matters: Construction and exact random sampling of con-
nected graphs (2020). https.//arxiv.org/abs/2009.03747

Arguments:
graph: Pointer to an uninitialized graph object.
out deg: The degree sequence of an undirected graph (if i ndeg isNULL), or

the out-degree sequence of adirected graph (if i ndeg isgiven).

182

http://eudml.org/doc/19050
https://www.jstor.org/stable/2098746
https://doi.org/10.1016/0012-365X%2873%2990037-X
https://doi.org/10.1016/0012-365X%2873%2990037-X
https://arxiv.org/abs/2009.03747

Graph generators

i ndeg:

al | owed_edge_types:

met hod:

The in-degree sequence of adirected graph. Pass NULL to generate an

undirected graph.

The types of edges to alow in the graph. For directed graphs, only
| GRAPH_SI MPLE_SWisimplemented at this moment. For undirect-
ed graphs, the following values are valid:

| GRAPH_SI MPLE_SW

| GRAPH_LOOPS_SW

| GRAPH_MULTI _SW

| GRAPH_LOOPS_SW |
| GRAPH_MULTI _SW

simplegraphs(i.e. no self-loops
or multi-edges allowed).

single self-loops are allowed,
but not multi-edges; currently
not implemented.

multi-edges are alowed, but
not self-loops.

both self-loops and multi-edges
are alowed.

The method to generate the graph. Possible values:

| GRAPH_REAL| ZE_DEGSEQ S-

MALLEST

| GRAPH_REAL| ZE_DEGSE-
Q LARGEST

| GRAPH_REAL| ZE_DEGSE-
Q_I NDEX

The vertex with smallest re-
maining degree is selected
first. The result is usualy a
graph with high negative de-
gree assortativity. In the undi-
rected case, this method is
guaranteed to generate a con-
nected graph, regardless of
whether multi-edges are al-
lowed, provided that a con-
nected realization exists (see
Horvd and Modes, 2020, as
well as http://szhorvat.net/peli-
can/hh-
connected-graphs.html). In the
directed case it tends to gen-
erate weakly connected graphs,
but this is not guaranteed.

The vertex with the largest re-
maining degreeis selected first.
The result is usually a graph
with high positive degree assor-
tativity, and isoften disconnect-
ed.

The vertices are selected in or-
der of their index (i.e. their
position in the degree vector).
Note that sorting the degree
vector and using the | NDEX
method is not equivalent to the
SMALLEST method above, as
SMALLEST uses the smallest
remaining degree for selecting
vertices, not the smallest initial
degree.

183

http://szhorvat.net/pelican/hh-connected-graphs.html
http://szhorvat.net/pelican/hh-connected-graphs.html
http://szhorvat.net/pelican/hh-connected-graphs.html

Graph generators

Returns:
Error code:
| GRAPH_UNI MPLEMENTED The requested method is not implemented.
| GRAPH_ENOVEM There is not enough memory to perform the operation.

| GRAPH_EI NVAL Invalid method parameter, or invalid in- and/or out-degree vectors.
The degree vectors should be non-negative, the length and sum of
out deg and i ndeg should match for directed graphs.

See also:

i graph_i s_graphical () to test graphicality without generating a graph; i gr aph_de-
gree_sequence_gane() to generate random graphs with a given degree sequence;
i graph_k _regul ar _gane() to generate random regular graphs; i gr aph_rewi re() to
randomly rewire the edges of a graph while preserving its degree sequence.

| gr aph_f anous — Create a famous graph by simply
providing its name.

i nt igraph_fanous(igraph t *graph, const char *nane);

The name of the graph can be simply supplied as a string. Note that this function creates graphs
which don't take any parameters, there are separate functions for graphs with parameters, e.g.
i graph_full () for creating afull graph.

The following graphs are supported:

Bul | Thebull graph, 5 vertices, 5 edges, resembles the head of abull
if drawn properly.

Chvat al Thisisthe smallest triangle-free graph that is both 4-chromatic
and 4-regular. According to the Grunbaum conjecture there ex-
ists an m-regular, m-chromatic graph with n vertices for every
m>1 and n>2. The Chvatal graph is an example for m=4 and
n=12. It has 24 edges.

Coxet er A non-Hamiltonian cubic symmetric graph with 28 verticesand
42 edges.
Cubi cal The Platonic graph of the cube. A convex regular polyhedron

with 8 vertices and 12 edges.

Di anmond A graph with 4 vertices and 5 edges, resembles a schematic
diamond if drawn properly.

Dodecahedral , Dodecahe- Another Platonic solid with 20 vertices and 30 edges.
dron

Fol kman The semisymmetric graph with minimum number of vertices,
20 and 40 edges. A semisymmetric graph isregular, edge tran-
sitive and not vertex transitive.

184

Graph generators

Franklin This is a graph whose embedding to the Klein bottle can be
colored with six colors, it is a counterexample to the necessity
of the Heawood conjecture on aKlein bottle. It has 12 vertices
and 18 edges.

Frucht The Frucht Graph isthe smallest cubical graph whose automor-
phism group consistsonly of theidentity element. It has12 ver-
tices and 18 edges.

Grot zsch The Grotzsch graph isatriangle-free graph with 11 vertices, 20
edges, and chromatic number 4. It isnamed after German math-
ematician Herbert Grotzsch, and its exi stence demonstrates that
the assumption of planarity is necessary in Grétzsch's theorem
that every triangle-free planar graph is 3-colorable.

Heawood The Heawood graph isan undirected graph with 14 verticesand
21 edges. The graph is cubic, and all cyclesin the graph have
six or moreedges. Every smaller cubic graph has shorter cycles,
so this graph is the 6-cage, the smallest cubic graph of girth 6.

Her schel The Herschel graph is the smallest nonhamiltonian polyhedral
graph. Itisthe unique such graph on 11 nodes, and has 18 edges.

House The house graph is a 5-vertex, 6-edge graph, the schematic
draw of ahouse if drawn properly, basically atriangle on top
of asguare.

HouseX The same as the house graph with an X in the square. 5 vertices
and 8 edges.

| cosahedral , | cosahedron A Platonic solid with 12 vertices and 30 edges.

Krackhardt _Kite A socia network with 10 vertices and 18 edges. Krackhardt,

D. Assessing the Political Landscape: Structure, Cognition, and
Power in Organizations. Admin. Sci. Quart. 35, 342-369, 1990.

Levi The graph is a 4-arc transitive cubic graph, it has 30 vertices
and 45 edges.

M CGee The McGee graph is the unique 3-regular 7-cage graph, it has
24 vertices and 36 edges.

Meredith The Meredith graph is a quartic graph on 70 nodes and 140

edges that is a counterexample to the conjecture that every 4-
regular 4-connected graph is Hamiltonian.

Noper f ect mat chi ng A connected graph with 16 vertices and 27 edges containing
no perfect matching. A matching in agraph is aset of pairwise
non-incident edges; that is, no two edges share acommon ver-
tex. A perfect matching isamatching which coversall vertices
of the graph.

Nonl i ne A graph whose connected components are the 9 graphs whose
presence as avertex-induced subgraph in agraph makes anon-
line graph. It has 50 vertices and 72 edges.

Cct ahedral , Octahedron Platonic solid with 6 vertices and 12 edges.

Pet er sen A 3-regular graph with 10 verticesand 15 edges. It isthe small-
est hypohamiltonian graph, i.e. it is non-hamiltonian but re-
moving any single vertex from it makes it Hamiltonian.

185

Graph generators

Robert son The unique (4,5)-cage graph, i.e. a 4-regular graph of girth 5.
It has 19 vertices and 38 edges.

Smal | est cyclicgroup A smallest nontrivial graph whose automorphism group is
cyclic. It has 9 vertices and 15 edges.

Tetrahedral, Tetrahedron Platonic solid with 4 verticesand 6 edges.

Thomassen The smallest hypotraceable graph, on 34 vertices and 52 edges.
A hypotracable graph does not contain a Hamiltonian path but
after removing any single vertex from it the remainder always
containsaHamiltonian path. A graph containing aHamiltonian
path is called traceable.

Tutte Tait's Hamiltonian graph conjecture states that every 3-con-
nected 3-regular planar graph is Hamiltonian. This graph is a
counterexample. It has 46 vertices and 69 edges.

Uni quel y3col orabl e Returnsa12-vertex, triangle-free graph with chromatic number
3 that isuniquely 3-colorable.

al t her An identity graph with 25 vertices and 31 edges. An identity
graph has a single graph automorphism, thetrivial one.

Zachary Saocial network of friendships between 34 members of akarate
club at a US university in the 1970s. See W. W. Zachary, An
information flow model for conflict and fissionin small groups,
Journal of Anthropological Research 33, 452-473 (1977).

Arguments:
graph: Pointer to an uninitialized graph object.

nane: Character constant, the name of the graph to be created, it is case insensitive.

Returns:

Error code, | GRAPH_EI NVAL if thereis no graph with the given name.

See also:

Other functions for creating graph structures. igraph_ring(), igraph_tree(),
igraph_lattice(),igraph_full().

Time complexity: O(|V |+|E]), the number of vertices plus the number of edgesin the graph.

| graph_| cf — Creates a graph from LCF notation.

int igraph_lcf(igraph_t *graph, igraph_integer_t n, ...);

LCF isshort for Lederberg-Coxeter-Frucht, it is a concise notation for 3-regular Hamiltonian graphs.
It consists of three parameters: the number of vertices in the graph, alist of shifts giving additional
edgesto acycle backbone, and another integer giving how many times the shifts should be performed.
See http://mathworld.wolfram.com/L CFNotation.html for details.

Arguments:

186

http://mathworld.wolfram.com/LCFNotation.html

Graph generators

graph: Pointer to an uninitialized graph object.

n: Integer, the number of verticesin the graph.

The shifts and the number of repeats for the shifts, plus an additional 0 to mark the end

of the arguments.

Returns:

Error code.

See also:

Seei graph_I cf _vect or () forasimilar functionusingavector_tinstead of thevariablelength

argument list.

Time complexity: O(|V[+|E]), the number of vertices plus the number of edges.

Example 9.9. Fileexanpl es/ si npl e/igraph_lcf.c

i graph_I cf _vector — Creates a graph from LCF no-

tation.

int igraph_lcf _vector(igraph_t *graph, igraph_integer t n,
const igraph_vector_t *shifts,
i graph_integer _t repeats);

This function is essentially the same asi gr aph_| cf (), only the way for giving the argumentsis

different. Seei gr aph_I cf () for details.

Arguments:
gr aph: Pointer to an uninitialized graph object.
n: Integer constant giving the number of vertices.

shifts: A vector giving the shifts.

repeats: Aninteger constant giving the number of repeats for the shifts.

Returns:

Error code.

See also:
i graph_| cf(),igraph_extended _chordal ring()

Time complexity: O(|V|+|E]), linear in the number of vertices plus the number of edges.

i graph_from prufer — Generates atree from a
Prifer sequence.

187

Graph generators

int igraph_fromprufer(igraph_t *graph, const igraph_vector_int_t *prufer);

A Prifer sequenceisaunique sequence of integers associated with alabelled tree. A tree on nvertices
can be represented by a sequence of n-2 integers, each between 0 and n-1 (inclusive). The algorithm
used by this function is based on Paulius Micikevi#ius, Saverio Caminiti, Narsingh Deo: Linear-time
Algorithms for Encoding Trees as Sequences of Node Labels

Arguments:

gr aph: Pointer to an uninitialized graph object.

prufer: ThePrifer sequence

Returns:
Error code:
| GRAPH_ENQOVEM there is not enough memory to perform the operation.

I GRAPH_EI NVAL invalid Prifer sequence given

See also:

i graph_to_prufer(),igraph_tree(),igraph_tree_gane()

| graph_at | as — Create a small graph from the
“Graph Atlas”.

int igraph_atlas(igraph_t *graph, int nunber);

The number of the graph is given as a parameter. The graphs are listed:
1. inincreasing order of number of nodes;
2. for afixed number of nodes, inincreasing order of the number of edges;

3. for fixed numbers of nodes and edges, in increasing order of the degree sequence, for example
111223 < 112222;

4. for fixed degree sequence, in increasing number of automorphisms.

The data was converted from the NetworkX software package, see http://networkx.github.io .

See An Atlas of Graphs by Ronald C. Read and Robin J. Wilson, Oxford University Press, 1998.
Arguments:

gr aph: Pointer to an uninitialized graph object.

nunber: Thenumber of the graph to generate.

Added in version 0.2.

Time complexity: O(|V|+|E|), the number of vertices plus the number of edges.

188

http://networkx.github.io

Graph generators

Example 9.10. Fileexanpl es/ si npl e/ i graph_atl as. c

| graph_de_brui j n— Generate a de Bruijn graph.

int igraph_de_bruijn(igraph_t *graph, igraph_integer_t m igraph_integer_t n);

A de Bruijn graph represents relationships between strings. An aphabet of mletters are used and
strings of length n are considered. A vertex correspondsto every possible string and thereisadirected
edge from vertex v to vertex wif the string of v can be transformed into the string of w by removing
itsfirst letter and appending aletter to it.

Please note that the graph will have mto the power n vertices and even more edges, so probably you
don't want to supply too big numbers for mand n.

De Bruijn graphs have some interesting properties, please see another source, e.g. Wikipedia for de-
tails.

Arguments:

graph: Pointer to an uninitialized graph object, the result will be stored here.

m Integer, the number of lettersin the alphabet.
n: Integer, the length of the strings.
Returns:
Error code.
See also:

i graph_kautz().

Time complexity: O(|V|+|E]), the number of vertices plus the number of edges.

| gr aph_kaut z — Generate a Kautz graph.

int igraph_kautz(igraph_t *graph, igraph_integer t m igraph_integer_t n);
A Kautz graph isalabeled graph, vertices are labeled by strings of length n+1 above an aphabet with
mt+1 |etters, with the restriction that every two consecutive lettersin the string must be different. There
isadirected edge from avertex v to another vertex wif it is possible to transform the string of v into

the string of wby removing thefirst letter and appending aletter toit. For string length 1 the new | etter
cannot equal the old letter, so there are no loops.

Kautz graphs have some interesting properties, see e.g. Wikipediafor details.
Vincent Matossian wrote the first version of thisfunction in R, thanks.
Arguments:

graph: Pointer to an uninitialized graph object, the result will be stored here.

189

Graph generators

m Integer, m+1 isthe number of |etters in the al phabet.
n: Integer, n+1 isthe length of the strings.
Returns:
Error code.
See also:

i graph_de _bruijn().

Time complexity: O([V[* [(m+1)/m]~n +|E]), in practice it is more like O(|V[+[E]). V] is the number
of vertices, |E| is the number of edges and mand n are the corresponding arguments.

| gr aph_ext ended_chor dal ring — Create an ex-
tended chordal ring.

i nt igraph_extended _chordal _ring(
i graph_t *graph, igraph_integer_t nodes, const igraph_matrix_t *W
i graph_bool _t directed);

An extended chordal ring is a cycle graph with additional chords connecting its vertices. Each row L
of the matrix Wspecifies a set of chords to be inserted, in the following way: vertex i will connect
toavertex L[(i nod p)] stepsahead of it along the cycle, where p is the length of L. In other
words, vertex i will be connected tovertex (i + L[(i nod p)]) nod nodes. If multiple
edges are defined in this way, this will output a non-simple graph. The result can be simplified using

i graph_simlify().

See also Kotsis, G: Interconnection Topologies for Parallel Processing Systems, PARS Mitteilungen
11, 1-6, 1993. Theigraph extended chordal rings are not identical to the onesin the paper. Inigraph the
matrix specifieswhich edgesto add. In the paper, acondition is specified which should simultaneously
hold between two endpoints and the reverse endpoints.

Arguments:

graph: Pointer to an uninitialized graph object, the result will be stored here.

nodes: Integer constant, the number of verticesin the graph. It must be at least 3.

W The matrix specifying the extraedges. The number of columns should divide the num-

ber of total vertices. The elements are allowed to be negative.

di rected: Whether the graph should be directed.

Returns:

Error code.

See also:
i graph_ring(),igraph_lcf(),igraph_lcf_vector().

Time complexity: O(|V|+|E]), the number of vertices plus the number of edges.

190

Graph generators

Games: randomized graph generators

Games are randomized graph generators. Randomization means that they generate a different graph
every timeyou call them.

| graph_grg_gane — Generates a geometric random
graph.

int igraph_grg_game(igraph_t *graph, igraph_integer_t nodes,
i graph_real _t radius, igraph_bool _t torus,
i graph_vector _t *x, igraph_vector_t *y);

A geometric random graph is created by dropping points (i.e. vertices) randomly on the unit square
and then connecting all those pairs which arelessthan r adi us apart in Euclidean distance.

Original code contributed by Keith Briggs, thanks Keith.
Arguments:

graph: Pointer to an uninitialized graph object.

nodes: The number of verticesin the graph.

radi us: Theradiuswithin which the vertices will be connected.

t orus: Logical constant. If true, periodic boundary conditions will be used, i.e. the vertices are
assumed to be on atorusinstead of a square.

X: Aninitialized vector or NULL. If not NULL, thepoints x coordinateswill bereturned here.
y: Aninitialized vector or NULL. If not NULL, thepoints'y coordinateswill bereturned here.
Returns:

Error code.

Time complexity: TODO, lessthan O(|V |*2+|E)).

Example 9.11. Fileexanpl es/ si npl e/ i graph_grg_gane. c

| graph_bar abasi _ganme — Generates a graph based
on the Barabasi-Albert model.

i nt igraph_barabasi _ganme(igraph_t *graph, igraph_integer_t n,
i graph_real t power,
i graph_integer t m
const igraph_vector_t *outseq,
i graph_bool _t outpref,
i graph_real t A,
i graph_bool t directed,
i graph_barabasi _al gorithmt al go,

191

Graph generators

Arguments:

gr aph:

n:

power :

out seq:

out pref:

di rected:

al go:

start_from

const igraph_t *start_fronj;

An uninitialized graph object.
The number of verticesin the graph.

Power of the preferential attachment. The probability that a vertex is cited is pro-
portional to d*power+A, where d isits degree (see also the out pr ef argument),
power and A are given by arguments. In the classic preferential attachment model
power=1.

The number of outgoing edges generated for each vertex. (Only if out seq is
NULL.)

Gives the (out-)degrees of the vertices. If this is constant, this can be a NULL
pointer or an empty (but initialized!) vector, in this case mcontains the constant
out-degree. The very first vertex has by definition no outgoing edges, so the first
number in this vector isignored.

Boolean, if true not only the in- but also the out-degree of a vertex increases its
citation probability. I.e., the citation probability is determined by the total degree
of the vertices. Ignored and assumed to be true if the graph being generated is
undirected.

The probability that a vertex is cited is proportional to d*power+A, where d isits
degree (see also the out pr ef argument), power and A are given by arguments.
In the previous versions of the function this parameter was implicitly set to one.

Boolean, whether to generate a directed graph.
The algorithm to use to generate the network. Possible values:

| GRAPH _BARABASI _BAG This is the agorithm that was previously
(before version 0.6) solely implemented in
igraph. 1t works by putting the ids of the
vertices into a bag (multiset, realy), exact-
ly as many times as their (in-)degree, plus
once more. Then therequired number of cit-
ed vertices are drawn from the bag, with
replacement. This method might generate
multiple edges. It only works if power=1
and A=1.

| GRAPH_BARABASI _ PSUMTREE Thisalgorithm usesapartial prefix-sumtree
to generate the graph. It does not generate
multiple edges and worksfor any power and
A values.

| GRAPH_BARABASI| _PSUMIREE MUt 1algorithm also uses a partial pre-

PLE fix-sum tree to generate the graph. The
difference is, that now multiple edges
are alowed. This method was imple-
mented under the name i gr aph_non-
| i near _bar abasi _gane before ver-
sion 0.6.

Either anull pointer, or agraph. In the former case, the starting configuration is a
clique of sizem In the latter case, the graph is a starting configuration. The graph

192

Graph generators

must be non-empty, i.e. it must have at least one vertex. If a graph is supplied
here and the out seq argument is also given, then out seq should only contain
information on the vertices that are not inthe st art _f r omgraph.

Returns:

Error code: | GRAPH_EI NVAL.: invalid n, mor out seq parameter.

Time complexity: O(|V|+|E|), the number of vertices plus the number of edges.

Example 9.12. Fileexanpl es/ si npl e/ i gr aph_bar abasi _gane. c

Example 9.13. Fileexanpl es/ si npl e/ i gr aph_bar abasi _gane2. c

| graph_erdos_renyi gane — Generates a random
(Erd#s-Rényi) graph.

int igraph_erdos_renyi _ganme(igraph_t *graph, igraph_erdos renyi t type,
igraph_integer t n, igraph_real t p_or_m
i graph_bool t directed, igraph_bool t |oops);

Arguments:
graph: Pointer to an uninitialized graph object.
type: The type of the random graph, possible values:
| GRAPH_ERDOS _RENYI _GNM G(n,m) graph, m edgesare selected uniformly ran-
domly in a graph with n vertices.
| GRAPH_ERDOS_RENY!I _GNP G(n,p) graph, every possible edge is included in
the graph with probability p.
n: The number of verticesin the graph.

p_or_m Thisisthe p parameter for G(n,p) graphs and the m parameter for G(n,m) graphs.
di rected: Logical, whether to generate a directed graph.

| oops: Logical, whether to generate loops (self) edges.

Returns:

Error code: | GRAPH_EI NVAL: invaid t ype, n, p or mparameter. | GRAPH_ENOVEM there is
not enough memory for the operation.

Time complexity: O(|V |+|E]), the number of vertices plus the number of edgesin the graph.
See also:

i graph_barabasi _gane(),igraph_grow ng_random gane()

Example 9.14. Fileexanpl es/ si npl e/ i graph_erdos_renyi _gane. c

193

Graph generators

i graph_watts strogatz ganme — The Watts-Stro-
gatz small-world model.

int igraph_watts _strogatz gane(igraph_t *graph, igraph_integer_ t dim
i graph_integer t size, igraph_integer_t nei,
i graph_real t p, igraph_bool t | oops,
i graph_bool t nmultiple);

This function generates a graph according to the Watts-Strogatz model of small-world networks. The
graph is obtained by creating a circular undirected lattice and then rewire the edges randomly with
aconstant probability.

See also: Duncan J Watts and Steven H Strogatz: Collective dynamics of “small world” networks,
Nature 393, 440-442, 1998.

Arguments:

gr aph: The graph to initialize.

dim The dimension of the lattice.

si ze: The size of the lattice along each dimension.

nei : The size of the neighborhood for each vertex. Thisis the same asthe nei argument
of i graph_connect _nei ghbor hood() .

p: The rewiring probability. A real number between zero and one (inclusive).

| oops: Logical, whether to generate loop edges.

mul tiple: Logica, whether to allow multiple edgesin the generated graph.

Returns:

Error code.

See also:

igraph_lattice(), i graph_connect nei ghbor hood() and
i graph_rew re_edges() can be used if more flexibility is needed, e.g. a different type of
|attice.

Time complexity: O(|V[*d"o+|E|), |[V| and |E| are the number of vertices and edges, d is the average
degree, o isthenei argument.

i graph_rew re_edges — Rewires the edges of a
graph with constant probability.

int igraph_rewire _edges(igraph_t *graph, igraph_real t prob,
i graph_bool t | oops, igraph_bool t multiple);

This function rewires the edges of a graph with a constant probability. More precisely each end point
of each edgeisrewired to auniformly randomly chosen vertex with constant probability pr ob.

194

Graph generators

Note that this function modifiestheinput gr aph, call i gr aph_copy() if you want to keep it.

Arguments:

graph: Theinput graph, thiswill be rewired, it can be directed or undirected.
prob: The rewiring probability a constant between zero and one (inclusive).
| oops: Boolean, whether loop edges are allowed in the new graph, or not.

nmul ti pl e: Boolean, whether multiple edges are allowed in the new graph.

Returns:

Error code.

See also:
i graph_watts_strogatz_gane() usesthisfunction for the rewiring.

Time complexity: O(|V|+|E)).

| graph_rewi re_directed edges — Rewires the
chosen endpoint of directed edges.

int igraph_rewire_directed_edges(igraph_t *graph, igraph_real t prob,
i graph_bool _t | oops, igraph_neinode_t node);

This function rewires either the start or end of directed edges in a graph with a constant probability.
Correspondingly, either the in-degree sequence or the out-degree sequence of the graph will be pre-
served.

Note that this function modifies the input gr aph, cal i gr aph_copy() if you want to keep it.

Arguments:

graph: The input graph, this will be rewired, it can be directed or undirected. If it is directed,
i graph_rew re_edges() will becaled.

pr ob: The rewiring probability, a constant between zero and one (inclusive).
| oops: Boolean, whether loop edges are alowed in the new graph, or not.

node: The endpoints of directed edges to rewire. It is ignored for undirected graphs. Possible
values:

| GRAPH_QOUT rewirethe end of each directed edge
| GRAPH_I N rewirethe start of each directed edge

| GRAPH_ALL rewire both endpoints of each edge

Returns:

Error code.

195

Graph generators

See also:

i graph_rew re_edges(),igraph_rewire()

Time complexity: O(|E]).

| gr aph_degr ee_sequence_gane — Generates a ran-
dom graph with a given degree sequence.

i nt igraph_degree_sequence_gane(i graph_t *graph, const igraph_vector t

Arguments:
gr aph:

out _deg:

i n_deg:

net hod:

const igraph_vector_t *in_deg,
i graph_degseq_t nethod);

Pointer to an uninitialized graph object.

The degree sequence for an undirected graph (if i n_seq is NULL or of length zero),
or the out-degree sequence of adirected graph (if i n_deq isnot of length zero).

It is either a zero-length vector or NULL (if an undirected graph is generated), or the
in-degree sequence.

The method to generate the graph. Possible values:

| GRAPH_DEGSEQ_SI MPLE Thismethod implements the configuration mod-
el. For undirected graphs, it puts all vertex IDs
in a bag such that the multiplicity of avertex in
the bag is the same as its degree. Then it draws
pairs from the bag until the bag becomes empty.
Thismethod may generate both loop (self) edges
and multiple edges. For directed graphs, the al-
gorithm is basically the same, but two separate
bags are used for the in- and out-degrees. Undi-
rected graphs are generated with probability pro-
portional to (\prod_{i<j} A{ij} !
\prod_i A{ii} !!)~{-1},whereAde
notes the adjacency matrix and ! ! denotes the
doublefactorial. Here Aisassumed to havetwice
the number of self-loops on its diagonal. The
corresponding expression for directed graphs
is(\prod_{i,j} A{ij}")"{-1}.Thus
the probability of all simple graphs (which only
have Os and 1s in the adjacency matrix) is the
same, while that of non-simple ones depends on
their edge and self-loop multiplicities.

| GRAPH _DEGSEQ SI M This method generates simple graphs. It is sim-
PLE_NO_MULTI PLE ilarto| GRAPH DEGSEQ S| MPLE but triesto
avoid multiple and loop edges and restarts the
generation from scratch if it gets stuck. It can
generate al simple realizations of a degree se-
guence, but it is not guaranteed to sample them
uniformly. This method is relatively fast and
it will eventually succeed if the provided de-

196

*out _deg

Graph generators

gree sequenceis graphical, but there is no upper
bound on the number of iterations.

| GRAPH_DEGSEQ SI M This method is identical to | GRAPH_DEGSE-

PLE_NO MULTI PLE_ UNI FORM Q _SI MPLE, but if the generated graph is not
simple, it rgjectsit and re-startsthe generation. It
generates all simple graphs with the same prob-
ahility.

| GRAPH_DEGSEQ VL This method samples undirected connected
graphs approximately uniformly. It is a Monte
Carlo method based on degree-preserving edge
swaps. This generator should be favoured
if undirected and connected graphs are to
be generated and execution time is not a
concern. igraph uses the original implemen-
tation of Fabien Viger; for the agorithm,
see https.//www-complexnetworks.lip6.fr/~lat-
apy/FV/generation.html and the paper https.//
arxiv.org/abs/cs/0502085

Returns:

Error code: | GRAPH_ENOVEM there is not enough memory to perform the operation.
| GRAPH_EI NVAL : invalid method parameter, or invalid in- and/or out-degree vectors. The degree
vectors should be non-negative, out _deg should sum up to an even integer for undirected graphs;
the length and sum of out _deg andi n_deg should match for directed graphs.

Time complexity: O(|V|+|E|), the number of vertices plus the number of edgesfor | GRAPH DEGSE-
Q_SI MPLE. Thetime complexity of the other modes is not known.

See also:
i graph_bar abasi _gane(),i graph_erdos_renyi _game(),igraph_i s_graphi -
cal ()

Example 9.15. File exanpl es/ si npl e/

i graph_degree_sequence_gane. c

| graph_k _regul ar _gane — Generates a random
graph where each vertex has the same degree.

i nt igraph_k_regul ar_gane(igraph_t *graph,
i graph_i nteger_t no_of_nodes, igraph_integer_t Kk,
i graph_bool _t directed, igraph_bool t mltiple);

This game generates adirected or undirected random graph where the degrees of verticesareequal toa
predefined constant k. For undirected graphs, at least one of k and the number of vertices must be even.

Currently, this game simply uses i graph_degree_sequence_gane with the SIM
PLE_NO MULTI PLE method and appropriately constructed degree sequences. Thefore, it does not
sample uniformly: whileit can generate all k-regular graphs with the given number of vertices, it does
not generate each one with the same probability.

Arguments:

197

https://www-complexnetworks.lip6.fr/~latapy/FV/generation.html
https://www-complexnetworks.lip6.fr/~latapy/FV/generation.html
https://arxiv.org/abs/cs/0502085
https://arxiv.org/abs/cs/0502085

Graph generators

graph: Pointer to an uninitialized graph object.

no_of _nodes: Thenumber of nodesin the generated graph.

k: The degree of each vertex in an undirected graph, or the out-degree and in-degree
of each vertex in a directed graph.

di r ect ed: Whether the generated graph will be directed.

mul tiple: Whether to allow multiple edges in the generated graph.

Returns:

Error code: | GRAPH_EI NVAL: invalid parameter; e.g., negative number of nodes, or odd number
of nodes and odd k for undirected graphs. | GRAPH_ENOVEM there is not enough memory for the
operation.

Time complexity: O(|V|+|E]) if mul ti pl e istrue, otherwise not known.

| graph_static_fitness_ganme — Non-growing ran-
dom graph with edge probabilities proportional to
node fithess scores.

int igraph_static_fitness_gane(igraph_t *graph, igraph_integer_t no_of_edges,
const igraph_vector_t *fitness_out, const igraph
i graph_bool _t | oops, igraph_bool t mltiple);

This game generates adirected or undirected random graph where the probability of an edge between
verticesi and j depends on the fitness scores of the two verticesinvolved. For undirected graphs, each
vertex has asingle fitness score. For directed graphs, each vertex has an out- and an in-fitness, and the
probability of an edge fromi to j depends on the out-fitness of vertex i and the in-fitness of vertex j.

The generation process goes as follows. We start from N disconnected nodes (where N is given by
the length of the fitness vector). Then we randomly select two vertices i and j, with probabilities
proportional to their fitnesses. (When the generated graph is directed, i is selected according to the
out-fitnesses and j is selected according to the in-fitnesses). If the vertices are not connected yet (or if
multiple edges are allowed), we connect them; otherwise we select anew pair. Thisis repeated until
the desired number of links are created.

It can be shown that the expected degree of each vertex will be proportional to itsfitness, although the
actual, observed degree will not be. If you need to generate a graph with an exact degree sequence,
consider i gr aph_degr ee_sequence_garne instead.

Thismodel iscommonly used to generate static scale-free networks. To achievethis, you haveto draw
thefitness scoresfrom the desired power-law distribution. Alternatively, youmay usei gr aph_st a-
tic_power | aw_gane which generates the fitnesses for you with a given exponent.

Reference: Goh K-I, Kahng B, Kim D: Universal behaviour of load distribution in scale-free networks.
Phys Rev Lett 87(27):278701, 2001.

Arguments:
graph: Pointer to an uninitialized graph object.

fitness_out: A numeric vector containing the fitness of each vertex. For directed graphs, this
specifies the out-fitness of each vertex.

198

Graph generators

fitness_in: If NULL, the generated graph will be undirected. If not NULL, thisargument spec-
ifies the in-fitness of each vertex.

no_of _edges: Thenumber of edgesin the generated graph.

| oops: Whether to alow loop edgesin the generated graph.
mul tiple: Whether to alow multiple edges in the generated graph.
Returns:

Error code: | GRAPH_EI NVAL: invalid parameter | GRAPH_ENOVEM thereisnot enough memory
for the operation.

Time complexity: O(|V| + |E| log |E]).

| graph_static_power | aw gane — Generates a
non-growing random graph with expected power-law
degree distributions.

int igraph_static_power | aw ganme(igraph_t *graph,
i graph_i nteger_t no_of_nodes, igraph_integer_t
i graph_real t exponent out, igraph_real t expol
i graph_bool t | oops, igraph_bool t multiple,
i graph_bool t finite size correction);

This game generates a directed or undirected random graph where the degrees of verticesfollow pow-
er-law distributions with prescribed exponents. For directed graphs, the exponents of thein- and out-
degree distributions may be specified separately.

The game simply usesi gr aph_stati c_fitness_gamne with appropriately constructed fitness

vectors. In particular, the fitness of vertex i is i@ where alpha = 1/(gamma-1) and gamma is the
exponent given in the arguments.

To remove correlations between in- and out-degrees in case of directed graphs, the in-fitness vector
will be shuffled after it has been set up and beforei graph_static_fitness_gane iscalled.

Note that significant finite size effects may be observed for exponents smaller than 3 in the original
formulation of the game. Thisfunction providesan argument that |etsyou removethefinite size effects
by assuming that the fitness of vertex i is (i+i0—1)'al Pha \vherei0 is a constant chosen appropriately to
ensure that the maximum degree is less than the square root of the number of edges times the average
degree; see the paper of Chung and Lu, and Cho et a for more details.

References:

Goh K-I, Kahng B, Kim D: Universal behaviour of load distribution in scale-free networks. Phys Rev
Lett 87(27):278701, 2001.

Chung F and Lu L: Connected components in a random graph with given degree sequences. Annals
of Combinatorics 6, 125-145, 2002.

Cho YS, Kim JS, Park J, Kahng B, Kim D: Percolation transitions in scale-free networks under the
Achlioptas process. Phys Rev Lett 103:135702, 2009.

Arguments:

199

Graph generators

graph: Pointer to an uninitialized graph object.

no_of _nodes: The number of nodesin the generated graph.

no_of edges: The number of edgesin the generated graph.

exponent _out: The power law exponent of the degree distribution. For directed

graphs, this specifiesthe exponent of the out-degree distribution.
It must be greater than or equal to 2. If you pass | GRAPH_| N-
FI NI TY here, you will get back an Erdos-Renyi random net-
work.

exponent _i n: If negative, the generated graph will be undirected. If greater than
or equal to 2, this argument specifies the exponent of the in-de-
greedistribution. If non-negative but lessthan 2, an error will be

generated.
| oops: Whether to allow loop edges in the generated graph.
mul tiple: Whether to allow multiple edges in the generated graph.

finite_size_correction: Whetherto usethe proposed finite size correction of Cho et a.

Returns:

Error code: | GRAPH_EI NVAL: invalid parameter | GRAPH_ENOVEM thereisnhot enough memory
for the operation.

Time complexity: O(|V| + |E| log |E]).

| graph_forest fire_gane — Generates a network
according to the “forest fire game”.

int igraph_forest fire_ganme(igraph_t *graph, igraph_integer_t nodes,
igraph_real t fw prob, igraph real t bw factor,
i graph_integer _t panbs, igraph_bool t directed);

The forest fire model intends to reproduce the following network characteristics, observed in real
networks:

» Heavy-tailed in-degree distribution.

» Heavy-tailed out-degree distribution.

« Communities.

» Densification power-law. The network is densifying in time, according to a power-law rule.
 Shrinking diameter. The diameter of the network decreasesin time.

The network is generated in the following way. One vertex is added at atime. This vertex connects to
(cites) anbs vertices aready present in the network, chosen uniformly random. Now, for each cited

vertex v we do the following procedure:

1. We generate two random numbers, X and y, that are geometrically distributed with means p/
(1-p) andrp(1-rp).(pisfw prob,r isbw factor.) The new vertex cites x outgoing

200

Graph generators

neighbors and y incoming neighbors of v, from those which are not yet cited by the new vertex. If
there are lessthan x or y such vertices available then we cite all of them.

2. The same procedure is applied to all the newly cited vertices.

See also: Jure Leskovec, Jon Kleinberg and Christos Faloutsos. Graphs over time: densification laws,
shrinking diameters and possible explanations. KDD '05: Proceeding of the eleventh ACM SGKDD
international conference on Knowledge discovery in data mining , 177--187, 2005.

Note however, that the version of the model in the published paper is incorrect in the sense that it
cannot generate the kind of graphs the authors claim. A corrected version is available from http://
cs.stanford.edu/peopl e/jure/pubs/powergrowth-tkdd. pdf , our implementation is based on this.

Arguments:

gr aph: Pointer to an uninitialized graph object.
nodes: The number of verticesin the graph.
fw_prob: The forward burning probability.

bw factor: The backward burning ratio. The backward burning probability is calculated as
bw. f act or *f w. pr ob.

panbs: The number of ambassador vertices.

di rect ed: Whether to create a directed graph.

Returns:
Error code.

Time complexity: TODO.

| graph_rew re — Randomly rewires a graph while
preserving the degree distribution.

int igraph_rewire(igraph_t *graph, igraph_integer_t n, igraph_rew ring_t node);

This function generates a new graph based on the original one by randomly rewiring edges while pre-
serving the original graph's degree distribution. Please note that the rewiring is done "in place”, so no
new graph will beallocated. If youwould liketo keep theoriginal graphintact, usei gr aph_copy()
beforehand.

Arguments:
graph: Thegraph object to be rewired.
n: Number of rewiring trials to perform.
node: The rewiring algorithm to be used. It can be one of the following flags:
| GRAPH_REW RI NG_SI MPLE Simple rewiring a gorithm which chooses two arbi-
trary edgesin each step (namely (a,b) and (c,d)) and
substitutesthem with (a,d) and (c,b) if they don't ex-

ist. The method will neither destroy nor create self-
loops.

201

http://cs.stanford.edu/people/jure/pubs/powergrowth-tkdd.pdf
http://cs.stanford.edu/people/jure/pubs/powergrowth-tkdd.pdf

Graph generators

| GRAPH_REW RI NG_SI M Same as | GRAPH_REW RI NG_SI MPLE but al-
PLE LOOPS lows the creation or destruction of self-loops.
Returns
Error code:

| GRAPH_EI NVMODE Invalid rewiring mode.

| GRAPH_EI NVAL Graph unsuitable for rewiring (e.g. it has less than 4 nodes in case of
| GRAPH_REW RI NG_SI MPLE)

| GRAPH_ENQVEM Not enough memory for temporary data.

Time complexity: TODO.

| graph_grow ng_random gane — Generates a grow-
ing random graph.

i nt igraph_grow ng_random gane(igraph_t *graph, igraph_integer_t n,
i graph_integer _t m igraph_bool _t directed,
i graph_bool _t citation);

This function simulates a growing random graph. We start out with one vertex. In each step a new
vertex is added and a number of new edges are also added. These graphs are known to be different
from standard (not growing) random graphs.

Arguments:

gr aph: Uninitialized graph object.

n: The number of verticesin the graph.

m The number of edgesto add in atime step (i.e. after adding a vertex).

di rected: Boolean, whether to generate a directed graph.
citation: Boolean,if TRUE, the edgesaways originate from the most recently added vertex and
are connected to a previous vertex.
Returns:
Error code: | GRAPH_EI NVAL: invalid n or mparameter.

Time complexity: O(|V[+|E]), the number of vertices plus the number of edges.

i graph_cal l away traits_ganme — Simulates a
growing network with vertex types.

int igraph_callaway_traits_game(igraph_t *graph, igraph_integer_t nodes,
i graph_integer_t types, igraph_integer_t edges_

202

Graph generators

const igraph_vector_t *type_dist,
const igraph_matrix_t *pref_matrix,
i graph_bool _t directed,

i graph_vector _t *node_type_vec);

The different types of vertices prefer to connect other types of vertices with a given probability.

The simulation goes like this: in each discrete time step a new vertex is added to the graph. The
type of this vertex is generated based on t ype_di st. Then two vertices are selected uniformly
randomly from the graph. The probability that they will be connected depends on the types of these
verticesandistakenfrompr ef _nat r i x. Then another two vertices are selected and thisis repeated
edges_per _st ep timesin each time step.

References:

D. S. Calaway, J. E. Hopcroft, J. M. Kleinberg, M. E. J. Newman, and S. H. Strogatz, Are ran-
domly grown graphs really random? Phys. Rev. E 64, 041902 (2001). https://doi.org/10.1103/Phys-

RevE.64.041902

Arguments:

graph: Pointer to an uninitialized graph.
nodes: The number of nodesin the graph.
types: Number of node types.

edges_per_step: Thenumber of connectionstried in each time step.

type_dist: Vector giving the distribution of the vertex types. If NULL, the distribution
is assumed to be uniform.

pref _matrix: Matrix giving the connection probabilities for the vertex types.

di r ect ed: Logical, whether to generate a directed graph.

node_type_vec: An initialized vector or NULL. If not NULL, the type of each node will be
stored here.

Returns:

Error code.

Added in version 0.2.

Time complexity: O(|V[*k*log(|V]), |V| is the number of vertices, kisedges_per _st ep.

| graph_est abl i shment _gane — Generates a graph
with a simple growing model with vertex types.

int igraph_establishnment _gane(igraph_t *graph, igraph_integer_t nodes,
i graph_integer t types, igraph_integer_t Kk,
const igraph_vector_t *type_dist,
const igraph_matrix_t *pref_matrix,
i graph_bool t directed,

203

https://doi.org/10.1103/PhysRevE.64.041902
https://doi.org/10.1103/PhysRevE.64.041902

Graph generators

i graph_vector _t *node_type_vec);

The simulation goes like this: a single vertex is added at each time step. This new vertex tries to
connect to k vertices in the graph. The probability that such a connection is realized depends on the
types of the verticesinvolved.

Arguments:

graph: Pointer to an uninitialized graph.

nodes: The number of verticesin the graph.

types: The number of vertex types.

k: The number of connectionstried in each time step.

type_dist: Vector giving the distribution of vertex types. If NULL, the distribution is as-
sumed to be uniform.

pref _matrix: Matrix giving the connection probabilities for different vertex types.

di r ect ed: Logical, whether to generate a directed graph.

node_type_vec: Aninitialized vector or NULL. If not NULL, the type of each node will be
stored here.

Returns:

Error code.

Added in version 0.2.

Time complexity: O([V[*k*log(|V]), |V| is the number of verticesand k isthe k parameter.

| graph_preference_gane — Generates a graph with
vertex types and connection preferences.

int igraph_preference_gane(igraph_t *graph, igraph_integer t nodes,
i graph_i nteger t types,
const igraph_vector_t *type_dist,
i graph_bool t fixed_sizes,
const igraph_matrix_t *pref_matrix,
i graph_vector _t *node_type_vec,
i graph_bool t directed,
i graph_bool t | oops);

Thisis practically the nongrowing variant of i gr aph_est abl i shnent _gane() . A given num-
ber of vertices are generated. Every vertex is assigned to a vertex type according to the given type
probabilities. Finally, every vertex pair is evaluated and an edge is created between them with a prob-
ability depending on the types of the vertices involved.

In other words, this function generates a graph according to a block-model. Vertices are divided into
groups (or blocks), and the probability the two vertices are connected depends on their groups only.

Arguments:

204

Graph generators

graph:
nodes:

types:

type_dist:

fixed_sizes:

pref_matrix:

node type_vec:

di rect ed:

| oops:

Returns:

Error code.

Added in version 0.3.

Pointer to an uninitialized graph.
The number of verticesin the graph.
The number of vertex types.

Vector giving the distribution of vertex types. If NULL, al vertex types will
have equal probability. See also thef i xed_si zes argument.

Boolean. If true, then the number of vertices with a given vertex typeis fixed
and thet ype_di st argument gives these numbers for each vertex type. If
true, andt ype_di st isNULL, then the function tries to make vertex groups
of the same size. If thisis not possible, then some groups will have an extra
vertex.

Matrix giving the connection probabilities for different vertex types. This
should be symmetric if the requested graph is undirected.

A vector where the individual generated vertex typeswill be stored. If NULL,
the vertex types won't be saved.

Logical, whether to generate adirected graph. If undirected graphs are request-
ed, only the lower l€ft triangle of the preference matrix is considered.

Logical, whether loop edges are allowed.

Time complexity: O(|V|+|E]), the number of vertices plus the number of edgesin the graph.

See also:

i graph_asynmetric_preference_gane(),
i graph_callaway_traits_gane()

i graph_est abl i shment _gane(),

| graph_asymmetric_preference_gane — Gener-
ates a graph with asymmetric vertex types and con-
nection preferences.

int igraph_asymetric_preference_ganme(igraph_t *graph, igraph_integer_t nodes,
i graph_i nteger _t out_types,
i graph_integer_t in_types,
const igraph_matrix_t *type_dist_matrix,
const igraph_matrix_t *pref_matrix,
i graph_vector_t *node_type_out_vec,
i graph_vector_t *node_type_in_vec,
i graph_bool _t | oops);

This is the asymmetric variant of i gr aph_pr ef er ence_gane() . A given number of vertices
are generated. Every vertex is assigned to an "outgoing" and an "incoming " vertex type according

205

Graph generators

to the given joint type probabilities. Finally, every vertex pair is evaluated and a directed edge is
created between them with a probability depending on the "outgoing" type of the source vertex and
the "incoming" type of the target vertex.

Arguments:
gr aph:
nodes:

out _types:
i n_types:

type_dist_matrix:

pref _matrix:

node_type_ out _vec:

node_type_in_vec:

| oops:

Returns:
Error code.

Added in version 0.3.

Pointer to an uninitialized graph.

The number of verticesin the graph.

The number of vertex out-types.

The number of vertex in-types.

Matrix of sizeout _types * in_types, givingthejoint distribu-
tion of vertex types. If NULL, incoming and outgoing vertex types are

independent and uniformly distributed.

Matrix of sizeout _types * i n_t ypes,givingtheconnection prob-
abilities for different vertex types.

A vector where the individual generated "outgoing” vertex typeswill be
stored. If NULL, the vertex types won't be saved.

A vector wheretheindividual generated "incoming” vertex typeswill be
stored. If NULL, the vertex types won't be saved.

Logical, whether loop edges are allowed.

Time complexity: O(|V|+|E|), the number of vertices plus the number of edgesin the graph.

See also:

i graph_preference_gane()

| graph_recent _degree_gane — Stochastic graph
generator based on the number of incident edges a
node has gained recently.

int igraph_recent_degree_ganme(igraph_t *graph, igraph_integer _t
i graph_real _t power,
i graph_i nteger _t time_w ndow,
i graph_integer_t m
const igraph_vector _t
i graph_bool _t out pref,
i graph_real _t zero_appeal,
i graph_bool _t directed);

nodes,

*out seq,

Arguments:

206

Graph generators

graph: Pointer to an uninitialized graph object.
nodes: The number of verticesin the graph, thisis the same as the number of time steps.
power : The exponent, the probability that a node gains a new edge is proportional to the

ti me_w ndow.

number of edgesit has gained recently (inthelast wi ndowtime steps) to power .

Integer constant, the size of the time window to use to count the number of recent
edges.

m Integer constant, the number of edges to add per time step if the out seq para-
meter isanull pointer or a zero-length vector.

out seq: The number of edges to add in each time step. Thisargument isignored if itisa
null pointer or azero length vector. In this case the constant mparameter is used.

out pref: Logical constant, if true the edges originated by a vertex also count as recent

zer o_appeal :

di rect ed:

Returns:

Error code.

incident edges. For most applicationsit is reasonable to set it to false.

Constant giving the attractiveness of the vertices which haven't gained any edge
recently.

Logical constant, whether to generate a directed graph.

Time complexity: O(|V[*log(|V|)+|E]), V] is the number of vertices, |E| is the number of edgesin the

graph.

| gr aph_bar abasi _agi ng_gane — Preferential at-
tachment with aging of vertices.

i nt igraph_barabasi _agi ng_gane(igraph_t *graph,
i graph_i nteger _t nodes,
igraph_integer_t m
const igraph_vector _t
i graph_bool _t out pref,
i graph_real _t pa_exp,
i graph_real _t agi ng_exp,
i graph_i nteger _t agi ng_bi ns,
i graph_real t zero_deg_appeal,

*out seq,

i graph_real t zero_age_appeal ,
i graph_real _t deg_coef,

i graph_real t age_coef,

i graph_bool _t directed);

Thisgamestartswith onevertex (if nodes > 0). In each step anew nodeisadded, and it isconnected to
mexisting nodes. Existing nodes to connect to are chosen with probability dependent on their (in-)de-
gree (k) and age (I). The degree-dependent partisdeg _coef * k~pa_exp + zero_deg_ap-
peal , while the age-dependent partisage_coef * |”~aging _exp + zero_age_ appeal,
which are summed to obtain the final weight.

Theagel isbased onthe number of verticesin the network and theagi ng_bi ns argument: the age
of anodeisincremented by 1 after eachf | oor (nodes / agi ng_bi ns) + 1 timesteps.

207

Graph generators

Arguments:

graph: Pointer to an uninitialized graph object.

nodes: The number of verticesin the graph.

m The number of edgesto add in each time step. Ignored if out seq isanon-
zero length vector.

out seq: The number of edgesto add in each time step. If itisNULL or a zero-length
vector then it isignored and the margument is used instead.

out pref: Logical constant, whether the edges initiated by a vertex contribute to the
probability to gain a new edge.

pa_exp: The exponent of the preferential attachment, a small positive number usu-
aly, the value 1 yields the classic linear preferential attachment.

agi ng_exp: The exponent of the aging, thisis a negative number usually.

agi ng_bi ns:

zero_deg _appeal :

zer o_age_appeal :

Integer constant, the number of age binsto use.
The degree dependent part of the attractiveness of the zero degree vertices.

The age dependent part of the attractiveness of the vertices of age zero. This
parameter isusualy zero.

deg_coef: The coefficient for the degree.
age_coef: The coefficient for the age.
di rect ed: Logical constant, whether to generate a directed graph.
Returns:
Error code.

Time complexity: O((|V[+|V|/aging_bins)*log(|V|)+|E]). V| is the number of vertices, [E| the number

of edges.

| graph_recent degree_agi ng_gane — Preferential
attachment based on the number of edges gained re-
cently, with aging of vertices.

i nt igraph_recent_degree_agi ng_gane(igraph_t *graph,
i graph_i nteger_t nodes,
i graph_integer_t m
const igraph_vector_t *outseq,
i graph_bool _t out pref,
i graph_real t pa_exp,
i graph_real _t agi ng_exp,
i graph_i nteger_t agi ng_bins,
i graph_integer_t tine_w ndow,
i graph_real _t zero_appeal,
i graph_bool _t directed);

208

Graph generators

This gameisvery similar toi gr aph_bar abasi _agi ng_gane() , except that instead of the to-
tal number of incident edges the number of edges gained inthe last t i me_w ndow time steps are
counted.

The degree dependent part of the attractivenessisgiven by k to the power of pa_exp pluszer o_ap-
peal ; the age dependent part is| to the power to agi ng_exp. k isthe number of edges gained in
thelastt i me_wi ndowtime steps, | isthe age of the vertex.

Arguments:

gr aph: Pointer to an uninitialized graph object.

nodes: The number of verticesin the graph.

m The number of edgesto add in each time step. If the out seq argument is not a
null vector or a zero-length vector then it isignored.

out seq: Vector giving the number of edges to add in each time step. If it isanull pointer
or a zero-length vector then it isignored and the margument is used.

out pref: Logical constant, if truethe edgesinitiated by avertex are also counted. Normally
itisfase.

pa_exp: The exponent for the preferential attachment.

agi ng_exp: The exponent for the aging, normally it is negative: old vertices gain edges with
less probability.

agi ng_bi ns: Integer constant, the number of age binsto use.

ti me_w ndow. Thetimewindow to use to count the number of incident edges for the vertices.
zer o_appeal : The degree dependent part of the attractiveness for zero degree vertices.

di r ect ed: Logical constant, whether to create a directed graph.

Returns:
Error code.

Time complexity: O((|V [+|V [/aging_bins)*log([V|)+|E]). V| is the number of vertices, |E| the number
of edges.

| graph_|l astcit_gane — Simulates a citation net-
work, based on time passed since the last citation.

int igraph_lastcit_game(igraph_t *graph,
i graph_i nteger _t nodes, igraph_integer_t edges_per_node
i graph_i nteger_t agebi ns,
const igraph_vector_t *preference,
i graph_bool _t directed);

This is a quite special stochastic graph generator, it models an evolving graph. In each time step
a single vertex is added to the network and it cites a number of other vertices (as specified by the
edges_per _st ep argument). The cited vertices are selected based on the last time they were cited.
Time is measured by the addition of vertices and it is binned into agebi ns bins. So if the current
timestepist andthelast citationto agiveni vertex wasmadeintimestept 0, then\c (t-t0)/binwidth

209

Graph generators

is calculated where binwidth is nodes/agebins+1, in the last expression /' denotes integer division,
so the fraction part is omitted.

Thepr ef er ence argument specifies the preferences for the citation lags, i.e. itsfirst elements con-
tains the attractivity of the very recently cited vertices, etc. The last element is special, it contains the
attractivity of the vertices which were never cited. This element should be bigger than zero.

Note that this function generates networks with multiple edgesif edges_per _st ep isbigger than
one, cal i graph_si npl i fy() ontheresult to get rid of these edges.

Arguments:
graph: Pointer to an uninitialized graph object, the result will be stored here.
node: The number of verticesin the network.

edges_per_node: Thenumber of edgesto add in each time step.
agebi ns: The number of age binsto use.

pref erence: Pointer to an initialized vector of length agebi ns+1. This contains the “at-
tractivity' of the various age bins, the last element is the attractivity of the
verticeswhich werenever cited, and it should be greater than zero. Itisagood
ideato haveall positive valuesin thisvector. Preferences cannot be negative.

di rect ed: Logical constant, whether to create directed networks.

Returns:

Error code.

See also:
i graph_bar abasi _agi ng_gane() .

Time complexity: O(|V[*a+|E[*log|V]), V| is the number of vertices, |E| is the total number of edges,
aistheagebi ns parameter.

i graph_cited type gane — Simulates a citation
based on vertex types.

int igraph_cited_type_game(igraph_t *graph, igraph_integer_t nodes,
const igraph_vector_t *types,
const igraph_vector_t *pref,
i graph_i nteger_t edges_per_step,
i graph_bool _t directed);

Function to create anetwork based on somevertex categories. Thisfunction createsacitation network:
in each step a single vertex and edges_per _st ep citing edges are added. Nodes with different
categories may have different probabilitiesto get cited, as given by the pr ef vector.

Note that this function might generate networks with multiple edgesif edges_per _st ep isgreater
than one. Y ou might want to call i gr aph_si npl i f y() ontheresult to remove multiple edges.

Arguments:

graph: Pointer to an uninitialized graph object.

210

Graph generators

nodes: The number of verticesin the network.

types: Numeric vector giving the categories of the vertices, so it should contain
nodes non-negative integer numbers. Types are numbered from zero.

pref: Theattractivity of thedifferent vertex categoriesin avector. Itslength should
bethemaximumelementint ypes plusone (typesare numbered from zero).

edges_per_step: Integer constant, the number of edgesto add in each time step.

di r ect ed: Logical constant, whether to create a directed network.

Returns:

Error code.

See also:
i graph_citing_cited_type_game() forabit moregeneral game.

Time complexity: O((|V [+|EDIog|V]), |V| and |E| are number of vertices and edges, respectively.

i graph_citing cited type _game — Simulates a ci-
tation network based on vertex types.

int igraph_citing cited_type gane(igraph_t *graph, igraph_integer_t nodes,
const igraph_vector_t *types,
const igraph_matrix_t *pref,
i graph_integer_t edges_per_step,
i graph_bool t directed);

Thisgameissimilartoi graph_cited_type _gane() but herethe category of the citing vertex
is aso considered.

An evolving citation network is modeled here, a single vertex and its edges_per _st ep citation
are added in each time step. The odds the a given vertex is cited by the new vertex depends on the
category of both the citing and the cited vertex and isgiven in the pr ef matrix. The categories of the
citing vertex correspond to the rows, the categories of the cited vertex to the columns of this matrix.
|.e. the element inrow i and column | gives the probability that aj vertex is cited, if the category
of the citing vertex isi .

Note that this function might generate networkswith multiple edgesif edges_per _st ep isgreater
than one. You might want to call i gr aph_si npl i f y() on the result to remove multiple edges.

Arguments:

gr aph: Pointer to an uninitialized graph object.

nodes: The number of verticesin the network.

types: A numeric matrix of length nodes, containing the categories of the vertices. The
categories are numbered from zero.

pref: The preference matrix, a square matrix is required, both the number of rows and
columns should be the maximum element in t ypes plus one (types are numbered
from zero).

211

Graph generators

di rected: Logical constant, whether to create a directed network.

Returns:
Error code.

Time complexity: O((|V|+|E]log|V]), [V| and |E| are number of vertices and edges, respectively.

| graph_sbm ganme — Sample from a stochastic block
model.

int igraph_sbm ganme(igraph_t *graph, igraph_integer_t n,
const igraph_matrix_t *pref_matrix,
const igraph_vector_int_t *block_sizes,
i graph_bool t directed, igraph_bool t |oops);

This function samples graphs from a stochastic block model by (doing the equivalent of) Bernoulli
trials for each potential edge with the probabilities given by the Bernoulli rate matrix, pr ef _na-
trix. SeeFaust, K., & Wasserman, S. (1992a). Blockmodels: Interpretation and evauation. Social
Networks, 14, 5-—61.

The order of the vertex ids in the generated graph correspondsto the bl ock_si zes argument.

Arguments:
gr aph: The output graph. This should be a pointer to an uninitialized graph.
n: Number of vertices.

pref _matrix: Thematrix giving the Bernoulli rates. ThisisaKxK matrix, where K isthe num-
ber of groups. The probability of creating an edge between vertices from groups
i andj isgiven by element (i,j).

bl ock_si zes: Aninteger vector giving the number of verticesin each group.

di rect ed: Boolean, whether to create a directed graph. If this argument isfalse, then pr e-
f _mat ri x must be symmetric.
| oops: Boolean, whether to create self-loops.
Returns:
Error code.

Time complexity: O(|V|+|E[+K”2), where V] is the number of vertices, |E| is the number of edges,
and K is the number of groups.

See also:

i graph_erdos_renyi _game() for asimple Bernoulli graph.

| gr aph_hsbm gane — Hierarchical stochastic block
model.

212

Graph generators

i nt igraph_hsbm gane(igraph_t *graph, igraph_integer_t n,
i graph_integer _t m const igraph_vector_t *rho,
const igraph_matrix_t *C, igraph_real _t p);

The function generates a random graph according to the hierarchical stochastic block model.

Arguments:

graph: The generated graph is stored here.

n: The number of verticesin the graph.
m The number of vertices per block. n/m must be integer.
rho: The fraction of vertices per cluster, within a block. Must sum up to 1, and rho * m must

be integer for all elements of rho.

C A square, symmetric numeric matrix, the Bernoulli rates for the clusters within a block.
Its size must mach the size of the \code{ rho} vector.

p: The Bernoulli rate of connections between vertices in different blocks.

Returns:

Error code.

See also:

i graph_sbm game() fortheclassic stochasticblock model,i gr aph_hsbm | i st _gane()
for amore general version.

i graph_hsbm | i st _ganme — Hierarchical stochastic
block model, more general version.

int igraph_hsbmlist_game(igraph_t *graph, igraph_integer_t n,
const igraph_vector_int_t *mist,
const igraph_vector_ptr_t *rholist,
const igraph_vector_ptr_t *dist,

i graph_real _t p);

The function generates a random graph according to the hierarchical stochastic block model.

Arguments:

graph: The generated graph is stored here.
n: The number of verticesin the graph.
mist: An integer vector of block sizes.

rholist: Alistof rhovectors(i gr aph_vect or _t objects), onefor each block.

Cist: A list of square matrices (i gr aph_mat ri x_t objects), one for each block, giving
the Bernoulli rates of connections within the block.

213

Graph generators

p: The Bernoulli rate of connections between vertices in different blocks.

Returns:

Error code.

See also:

i graph_sbm gane() for the classic stochastic block model, i gr aph_hsbm gane() fora
simpler general version.

| graph_dot _product gane — Generates a random
dot product graph.

i nt igraph_dot_ product _gane(igraph_t *graph, const igraph_matrix_t *vecs,
i graph_bool _t directed);

In this model, each vertex is represented by a latent position vector. Probability of an edge between
two vertices are given by the dot product of their latent position vectors.

See also Christine Leigh Myers Nickel: Random dot product graphs, a model for social networks.
Dissertation, Johns Hopkins University, Maryland, USA, 2006.

Arguments:
gr aph: The output graph is stored here.
vecs: A matrix in which each latent position vector is a column. The dot product of the

latent position vectors should be in the [0,1] interval, otherwise a warning is given.
For negative dot products, no edges are added; dot products that are larger than one
aways add an edge.

di rected: Should the generated graph be directed?

Returns:
Error code.

Time complexity: O(n*n*m), where n is the number of vertices, and m is the length of the latent
vectors.

See also:

i graph_sanple_dirichlet(), i graph_sanpl e_sphere_vol urme(),
i graph_sanpl e_sphere_surface() for functionsto generate the latent vectors.

| graph_tree_gane — Generates a random tree with
the given number of nodes.

int igraph_tree_gane(igraph_t *graph, igraph_integer_t n, igraph_bool t directe

214

Graph generators

This function samples uniformly from the set of labelled trees, i.e. it generates each labelled tree with
the same probability.

Arguments:
graph: Pointer to an uninitialized graph object.
n: The number of nodesin the tree.

di rected: Whetherto create adirected tree. The edges are oriented away from the root.

nmet hod: The algorithm to use to generate the tree. Possible values:
| GRAPH_RAN- This algorithm samples Priifer sequences uni-
DOM TREE PRUFER formly, then converts them to trees. Directed

trees are not currently supported.

| GRAPH_RANDOM LERW This algorithm effectively performs a loop-
erased random walk on the complete graph to
uniformly sample its spanning trees (Wilson's
algorithm).
Returns:
Error code: | GRAPH _ENOVEM there is not enough memory to perform the operation.
| GRAPH_EI NVAL: invalid tree size
See also:

i graph_from prufer()

| graph_correl at ed_gane — Generates a random
graph correlated to an existing graph.

int igraph_correl ated _ganme(const igraph_t *old_graph, igraph_t *new graph,
i graph_real t corr, igraph_real t p,
const igraph_vector_t *pernutation);
Sample anew graph by perturbing the adjacency matrix of agiven graph and shuffling its vertices.
Arguments:

ol d_gr aph: The original graph.

new_gr aph: The new graph will be stored here.

corr: A scalar inthe unit interval, the target Pearson correl ation between the adjacency
matrices of the original the generated graph (the adjacency matrix being used as
avector).

p: A numeric scalar, the probability of an edge between two vertices, it must in the

open (0,1) interval.

permut ati on: A permutation to apply to the vertices of the generated graph. It can also be anull
pointer, in which case the vertices will not be permuted.

215

Graph generators

Returns:

Error code

See also:

i graph_correl ated_pai r_gane() for generating a pair of correlated random graphs in
one go.

| graph_correl ated _pai r _gane — Generates pairs
of correlated random graphs.

int igraph_correl ated_pair_game(i graph_t *graphl, igraph_t *graph2,
i graph_integer_t n, igraph_real t corr, igraph_
i graph_bool _t directed,
const igraph_vector_t *permnutation);

Sample two random graphs, with given correlation.

Arguments:

graphl: Thefirst graph will be stored here.

graph2: The second graph will be stored here.

n: The number of verticesin both graphs.

corr: A scalar inthe unit interval, the target Pearson correl ation between the adjacency
matrices of the original the generated graph (the adjacency matrix being used as
avector).

p: A numeric scalar, the probability of an edge between two vertices, it must in the
open (0,1) interval.

di r ect ed: Whether to generate directed graphs.

permut ati on: A permutation to apply to the vertices of the second graph. It can also be a null
pointer, in which case the vertices will not be permuted.

Returns:

Error code

See also:

i graph_correl at ed_gane() for generating a correlated pair to a given graph.

| graph_si npl e_i nterconnected islands_gane —
Generates a random graph made of several intercon-
nected islands, each island being a random graph.

216

Graph generators

int igraph_sinple_interconnected_islands_game(
i graph_t *graph,
i graph_integer _t islands_n,
i graph_i nteger_t islands_size,
i graph_real _t islands_pin,
igraph_integer_t n_inter);

Arguments:
graph: Pointer to an uninitialized graph object.
i sl ands_n: The number of islandsin the graph.

i sl ands_si ze: Thesizeof idandsin the graph.
i sl ands_pi n: The probability to create each possible edge into each island.

n_inter: The number of edges to create between two islands.

Returns:

Error code: | GRAPH_EI NVAL: invalid parameter | GRAPH_ENOVEM thereis hot enough memory
for the operation.

Time complexity: O(|V|+|E]), the number of vertices plus the number of edgesin the graph.

217

Chapter 10. Games on graphs

Microscopic update rules

| graph_deterministic optimal _imtation—
Adopt a strategy via deterministic optimal imitation.

int igraph_determnistic_optimal _inmtation(const igraph_t *graph,
i graph_integer_t vid,
i graph_optimal _t optimality,

const

i graph_vector_t *quantities,

i graph_vector_t *strategies,
i graph_nei node_t node);

A simpledeterministic imitation strategy where avertex revisesits strategy to that which yieldsalocal
optimal. Here "local" iswith respect to the immediate neighbours of the vertex. The vertex retainsits
current strategy where this strategy yields a locally optimal quantity. The quantity in this case could
be ameasure such as fitness.

Arguments:

gr aph:

vi d:

optimality:

guantities:

strat egi es:

Thegraph object representing the game network. Thiscannot betheempty or trivial
graph, but must have at least two vertices and one edge. If gr aph has one vertex,
then no strategy update would take place. Furthermore, if gr aph has at least two
vertices but zero edges, then strategy update would also not take place.

The vertex whose strategy is to be updated. It is assumed that vi d represents a
vertex in gr aph. No checking is performed and it is your responsibility to ensure
thatvi d isindeed avertex of gr aph. If anisolated vertex isprovided, i.e. theinput
vertex has degree 0, then no strategy update would take placeand vi d would retain
its current strategy. Strategy update would also not take place if the local neigh-
bourhood of vi d areitsin-neighbours (respectively out-neighbours), but vi d has
zero in-neighbours (respectively out-neighbours). Loops are ignored in computing
the degree (in, out, al) of vi d.

Logical; controls the type of optimality to be used. Supported values are:

I GRAPH_MAXI MUM Use maximum deterministic imitation, where the strategy
of the vertex with maximum quantity (e.g. fitness) would
be adopted. We update the strategy of vi d to that which
yieldsalocal maximum.

| GRAPH_M NI MUM Use minimum deterministic imitation. That is, the strategy
of the vertex with minimum quantity would be imitated.
In other words, update to the strategy that yields a local
minimum.

A vector of quantities providing the quantity of each vertex in gr aph. Think of
each entry of thevector asbeing generated by afunction such asthefitnessfunction
for the game. Soif the vector represents fitness quantities, then each vector entry is
the fitness of some vertex. Thelength of thisvector must be the same asthe number
of verticesin the vertex set of gr aph.

A vector of the current strategiesfor the vertex population. The updated strategy for
vi d would be stored here. Each strategy is identified with a nonnegative integer,

218

Games on graphs

whose interpretation depends on the payoff matrix of the game. Generally we use
the strategy ID as arow or column index of the payoff matrix. The length of this
vector must be the same as the number of verticesin the vertex set of gr aph.

node: Defines the sort of neighbourhood to consider for vi d. If gr aph is undirected,
then we use all theimmediate neighboursof vi d. Thusif you know that gr aph is
undirected, then it is safe to pass the value | GRAPH_ALL here. Supported values
are:

| GRAPH_QUT Usetheout-neighboursof vi d. Thisoptionisonly relevant when
gr aph isadirected graph.

| GRAPH_I N Usethein-neighboursof vi d. Again thisoptionisonly relevant
when gr aph isadirected graph.

| GRAPH_ALL Use both the in- and out-neighbours of vi d. This option is only
relevant if gr aph isadigraph. Also usethisvaueif gr aph is
undirected.

Returns:

The error code | GRAPH_EI NVAL isreturned in each of the following cases: (1) Any of the para-
meters gr aph, quanti ti es, or strat egi es isanull pointer. (2) The vector quantiti es
or strat egi es hasalength different from the number of verticesin gr aph. (3) The parameter
gr aph isthe empty or null graph, i.e. the graph with zero vertices and edges.

Time complexity: O(2d), where d is the degree of the vertex vi d.

Example 10.1. File exanpl es/ si npl e/
i graph_determnistic_optimal _imtation.c

| gr aph_noran_process — The Moran process in a
network setting.

int igraph_noran_process(const igraph_t *graph,
const igraph_vector_t *weights,
i graph_vector t *quantities,
i graph_vector t *strategies,
i graph_nei node_t node);

Thisis an extension of the classic Moran process to a network setting. The Moran processis a model
of haploid (asexual) reproduction within a population having a fixed size. In the network setting, the
Moran process operates on a weighted graph. At each time step a vertex ais chosen for reproduction
and another vertex b is chosen for death. Vertex agivesbirth to anidentical clone c, which replacesb.
Vertex cisacloneof ainthat ¢ inherits both the current quantity (e.g. fitness) and current strategy of a.

The graph G representing the game network is assumed to be simple, i.e. free of loops and without
multiple edges. If, on the other hand, G has a loop incident on some vertex v, then it is possible that
when v is chosen for reproduction it would forgo this opportunity. In particular, when v is chosen for
reproduction and v is also chosen for death, the clone of v would be v itself with its current vertex ID.
In effect v forgoes its chance for reproduction.

Arguments:

gr aph: Thegraph object representing the game network. This cannot betheempty or trivial
graph, but must have at least two vertices and one edge. The Moran process will

219

Games on graphs

wei ght s:

guantities:

strategies:

node:

Returns:

not take place in each of the following cases: (1) If gr aph has one vertex. (2) If
gr aph has at least two vertices but zero edges.

A vector of all edge weightsfor gr aph. Thus weightg[i] means the weight of the
edgewith edgeID i. For the purpose of the Moran process, each weight is assumed
to be positive; it isyour responsibility to ensure this condition holds. The length of
this vector must be the same as the number of edgesin gr aph.

A vector of quantities providing the quantity of each vertexingr aph. The quantity
of the new clone will be stored here. Think of each entry of the vector as being
generated by a function such as the fitness function for the game. So if the vector
represents fitness quantities, then each vector entry is the fithess of some vertex.
The length of this vector must be the same as the number of vertices in the vertex
set of gr aph. For the purpose of the Moran process, each vector entry is assumed
to be nonnegative; no checks will be performed for this. It is your responsibility
to ensure that at least one entry is positive. Furthermore, this vector cannot be a
vector of zeros; this condition will be checked.

A vector of the current strategies for the vertex population. The strategy of the new
clone will be stored here. Each strategy is identified with a nonnegative integer,
whose interpretation depends on the payoff matrix of the game. Generally we use
the strategy 1D as arow or column index of the payoff matrix. The length of this
vector must be the same as the number of verticesin the vertex set of gr aph.

Definesthe sort of neighbourhood to consider for the vertex a chosen for reproduc-
tion. Thisisonly relevant if gr aph isdirected. If gr aph isundirected, then it is
safe to pass the value | GRAPH_ALL here. Supported values are:

I GRAPH_QUT Use the out-neighbours of a. This option is only relevant when
gr aph isdirected.

| GRAPH I N Use the in-neighbours of a. Again this option is only relevant
when gr aph isdirected.

| GRAPH_ALL Useboth thein- and out-neighbours of a. This optionisonly rel-
evant if gr aph isdirected. Also usethisvalueif gr aph isundi-
rected.

The error code | GRAPH_EI NVAL is returned in each of the following cases. (1) Any of the pa
rameters gr aph, wei ght s, quantiti es or strategi es is anull pointer. (2) The vector
quantiti es orstrat egi es hasalength different from the number of verticesin gr aph. (3)
The vector wei ght s hasalength different from the number of edgesin gr aph. (4) The parame-
ter gr aph isthe empty or null graph, i.e. the graph with zero vertices and edges. (5) The vector
wei ght s, or the combination of interest, sumsto zero. (6) Thevector quant i ti es, or thecom-
bination of interest, sumsto zero.

Time complexity: depends on the random number generator, but isusually O(n) where nisthe number
of verticesingr aph.

References:

(Li eberman et al. 2005) E. Lieberman, C. Hauert, and M. A. Nowak. Evolutionary dy-

(Moran 1958)

namics on graphs. Nature, 433(7023):312--316, 2005.

P. A. P. Moran. Random processes in genetics. Mathe-
matical Proceedings of the Cambridge Philosophical Society,
54(1):60--71, 1958.

220

Games on graphs

i graph_roul ette wheel imtation— Adopta
strategy via roulette wheel selection.

int igraph_roulette wheel initation(const igraph_t *graph,
i graph_integer_t vid,
i graph_bool _t islocal,
const igraph_vector_t *quantities,
i graph_vector _t *strategies,
i graph_nei node_t node);

A simple stochastic imitation strategy where a vertex revisesits strategy to that of a vertex u chosen
proportionate to u's quantity (e.g. fitness). Thisis a specia case of stochastic imitation, where a can-
didate is not chosen uniformly at random but proportionate to its quantity.

Arguments:

graph: Thegraph obj ect representing the game network. Thiscannot betheempty or trivial
graph, but must have at least two vertices and one edge. If gr aph has one vertex,
then no strategy update would take place. Furthermore, if gr aph has at least two
vertices but zero edges, then strategy update would also not take place.

vi d: The vertex whose strategy is to be updated. It is assumed that vi d represents a
vertex in gr aph. No checking is performed and it is your responsibility to ensure
thatvi d isindeed avertex of gr aph. If anisolated vertex isprovided, i.e. theinput
vertex has degree 0, then no strategy update would takeplaceand vi d would retain
its current strategy. Strategy update would also not take place if the local neigh-
bourhood of vi d areitsin-neighbours (respectively out-neighbours), but vi d has
zero in-neighbours (respectively out-neighbours). Loops are ignored in computing
the degree (in, out, al) of vi d.

i sl ocal: Bool ean; thisflag controlswhich perspectiveto usein computing therel ative quan-
tity. If true then we use the local perspective; otherwise we use the global perspec-
tive. The local perspective for vi d isthe set of all immediate neighbours of vi d.
In contrast, the global perspective for vi d isthe vertex set of gr aph.

guantities: A vector of quantities providing the quantity of each vertex in gr aph. Think of
each entry of thevector asbeing generated by afunction such asthefitnessfunction
for the game. Soif the vector represents fitness quantities, then each vector entry is
thefitness of some vertex. Thelength of thisvector must be the same asthe number
of verticesin the vertex set of gr aph. For the purpose of roulette wheel selection,
each vector entry is assumed to be nonnegative; no checks will be performed for
this. It is your responsibility to ensure that at least one entry is nonzero. Further-
more, this vector cannot be a vector of zeros; this condition will be checked.

strategi es: A vector of the current strategiesfor the vertex population. The updated strategy for
vi d would be stored here. Each strategy is identified with a nonnegative integer,
whose interpretation depends on the payoff matrix of the game. Generally we use
the strategy ID as arow or column index of the payoff matrix. The length of this
vector must be the same as the number of verticesin the vertex set of gr aph.

node: Defines the sort of neighbourhood to consider for vi d. Thisisonly relevant if we
are considering the local perspective, i.e. if i sl ocal istrue. If we are consider-
ing the global perspective, then it is safe to passthe value | GRAPH_ALL here. If
gr aph is undirected, then we use al the immediate neighbours of vi d. Thus if
you know that gr aph isundirected, then it is safeto passthevalue | GRAPH_ALL
here. Supported values are:

221

Games on graphs

| GRAPH_QUT Usetheout-neighboursof vi d. Thisoptionisonly relevant when
gr aph isadigraph and we are considering the local perspective.

| GRAPH I N Usethein-neighboursof vi d. Again thisoptionisonly relevant
when gr aph isadirected graph and we are considering the local
perspective.

| GRAPH_ALL Use both the in- and out-neighbours of vi d. This option is only
relevant if gr aph isadigraph. Also use thisvalueif gr aph is
undirected or we are considering the global perspective.

Returns:

The error code | GRAPH_EI NVAL isreturned in each of the following cases: (1) Any of the para-
meters gr aph, quanti ti es, or strat egi es isanull pointer. (2) The vector quantities
or st rat egi es has alength different from the number of verticesin gr aph. (3) The parame-
ter gr aph isthe empty or null graph, i.e. the graph with zero vertices and edges. (4) The vector
quant i ti es sumsto zero.

Time complexity: O(n) where nisthe number of verticesin the perspectiveto consider. If we consider
the global perspective, then n isthe number of verticesin the vertex set of gr aph. On the other hand,
for the local perspective nisthe degree of vi d, excluding loops.

Reference:

(Yu & Gen 2010) X. Yuand M. Gen. Introduction to Evolutionary Algorithms. Springer,
2010, pages 18--20.

Example 10.2. File exanpl es/ si npl e/
igraph_roulette wheel imtation.c

| graph_stochastic_imtation— Adopt a strategy
via stochastic imitation with uniform selection.

int igraph_stochastic_imtation(const igraph_t *graph,
i graph_integer t vid,
igraph_imtate al gorithmt algo,
const igraph_vector_t *quantities,
i graph_vector t *strategies,
i graph_nei node_t node);

A simple stochastic imitation strategy where a vertex revises its strategy to that of a vertex chosen
uniformly at random from its local neighbourhood. This is called stochastic imitation via uniform
selection, where the strategy to imitate is chosen via some random process. For the purposes of this
function, we use uniform selection from a pool of candidates.

Arguments:

graph: Thegraph obj ect representing the game network. Thiscannot betheempty or trivial
graph, but must have at least two vertices and one edge. If gr aph has one vertex,
then no strategy update would take place. Furthermore, if gr aph has at least two
vertices but zero edges, then strategy update would also not take place.

vi d: The vertex whose strategy is to be updated. It is assumed that vi d represents a

vertex in gr aph. No checking is performed and it is your responsibility to ensure

222

Games on graphs

al go:

guantities:

strat egi es:

node:

Returns:

that vi d isindeed avertex of gr aph. If anisolated vertex isprovided, i.e. theinput
vertex has degree 0, then no strategy update would take placeand vi d would retain
its current strategy. Strategy update would also not take place if the local neigh-
bourhood of vi d areitsin-neighbours (respectively out-neighbours), but vi d has
zero in-neighbours (respectively out-neighbours). Loops are ignored in computing
the degree (in, out, al) of vi d.

Thisflag controls which algorithm to use in stochastic imitation. Supported values
are:

| GRAPH | M TATE_AUGVENTED Augmented imitation. Vertex vi d imitates
the strategy of the chosen vertex u provid-
ed that doing so would increase the quantity
(e.g. fitness) of vi d. Augmented imitation
can be thought of as"imitate if better".

| GRAPH | M TATE_BLI ND Blind imitation. Vertex vi d blindly imi-
tates the strategy of the chosen vertex u, re-
gardless of whether doing sowould increase
or decrease the quantity of vi d.

| GRAPH | M TATE_CONTRACT- Contracted imitation. Here vertex vi d im-

ED itates the strategy of the chosen vertex u
if doing so would decrease the quantity of
vi d. Think of contracted imitation as"im-
itate if worse".

A vector of quantities providing the quantity of each vertex in gr aph. Think of
each entry of thevector asbeing generated by afunction such asthefitnessfunction
for the game. Soif the vector represents fitness quantities, then each vector entry is
the fitness of some vertex. Thelength of thisvector must be the same asthe number
of verticesin the vertex set of gr aph.

A vector of the current strategiesfor the vertex population. The updated strategy for
vi d would be stored here. Each strategy is identified with a nonnegative integer,
whose interpretation depends on the payoff matrix of the game. Generally we use
the strategy ID as arow or column index of the payoff matrix. The length of this
vector must be the same as the number of verticesin the vertex set of gr aph.

Defines the sort of neighbourhood to consider for vi d. If gr aph is undirected,
then we use al theimmediate neighbours of vi d. Thusif you know that gr aph is
undirected, then it is safe to pass the value | GRAPH_ALL here. Supported values
are

| GRAPH_QUT Usetheout-neighboursof vi d. Thisoptionisonly relevant when
gr aph isadirected graph.

| GRAPH I N Usethein-neighbours of vi d. Again thisoptionisonly relevant
when gr aph isadirected graph.

| GRAPH_ALL Use both the in- and out-neighbours of vi d. This option is only
relevant if gr aph isadigraph. Also usethisvaueif gr aph is
undirected.

The error code | GRAPH_EI NVAL isreturned in each of the following cases: (1) Any of the para-
meters gr aph, quanti ti es, or strat egi es isanull pointer. (2) The vector quantiti es
or strat egi es hasalength different from the number of verticesin gr aph. (3) The parameter

223

Games on graphs

gr aph isthe empty or null graph, i.e. the graph with zero vertices and edges. (4) The parameter
al go refersto an unsupported stochastic imitation algorithm.

Time complexity: depends on the uniform random number generator, but should usually be O(1).

Example 10.3. File exanpl es/ si npl e/
i graph_stochastic_imtation.c

Epidemic models

| graph_sir — Performs a number of SIR epidemics
model runs on a graph.

int igraph_sir(const igraph_t *graph, igraph_real _t beta,
i graph_real _t ganma, igraph_integer_t no_sim
i graph_vector_ptr_t *result);

The SIR modé is asimple model from epidemiology. The individuals of the population might bein
three states: susceptible, infected and recovered. Recovered people are assumed to be immune to the
disease. Susceptibles become infected with a rate that depends on their number of infected neigbors.
Infected people become recovered with a constant rate. See these parameters below.

This function runs multiple smulations, all starting with asingle uniformly randomly chosen infected
individual. A simulation is stopped when no infected individuals are left.

Arguments:

graph: The graph to perform the model on. For directed graphs edge directions are ignored and
awarning isgiven.

bet a: Therateof infection of anindividual that is susceptible and hasasingleinfected neighbor.
The infection rate of a susceptible individual with n infected neighbors is n times beta.
Formally thisisthe rate parameter of an exponential distribution.

ganma: Therate of recovery of an infected individual. Formally, thisis the rate parameter of an
exponential distribution.

no_sim Thenumber of simulation runsto perform.

resul t: Theresult of thesimulationisstored here, inalistof i graph_sir _t objects. To deal-
locate memory, the user needstocall i gr aph_si r _dest r oy on each element, before
destroying the pointer vector itself usingi gr aph_vect or _ptr_destroy_all ().

Returns:

Error code.

Time complexity: O(no_sim* (|V| + [E| log([V]))).

| graph_sir _t — The result of one SIR model simula-
tion.

224

Games on graphs

typedef struct igraph_sir_t {

i graph_vector_t tines;

i graph_vector_int_t no_s, no_i, no_r;
} igraph_sir_t;

Data structure to store the results of one simulation of the SIR (susceptibl e-infected-recovered) model
on a graph. It has the following members. They are all (real or integer) vectors, and they are of the
same length.

Values;

ti mes: A vector, thetimes of the events are stored here.

no_s: An integer vector, the number of susceptiblesin each time step is stored here.
no_i: An integer vector, the number of infected individuals at each time step, is stored here.
no_r: An integer vector, the number of recovered individualsis stored here at each time step.

| graph_sir _destroy — Deallocates memory associ-
ated with a SIR simulation run.

voi d igraph_sir_destroy(igraph_sir_t *sir);

Arguments:

sir: Theigraph_sir_t object storing the simulation.

225

Chapter 11. Vertex and edge selectors
and sequences, iterators

About selectors, iterators

Everything about vertices and vertex selectorsalso appliesto edges and edge selectors unless explicitly
noted otherwise.

The vertex (and edge) selector notion wasintroduced inigraph 0.2. It isaway to reference a sequence
of vertices or edges independently of the graph.

Whilethis might sound quite mysterious, it isactually very simple. For example, all vertices of agraph
canbeselected by i graph_vs_al | () andthegraphindependence meansthati gr aph_vs_al -

| () isnot parametrized by a graph object. That is, i gr aph_vs_al | () isthe general concept of
selecting all vertices of agraph. A vertex selector is then away to specify the class of vertices to be
visited. The selector might specify that all vertices of a graph or all the neighbours of a vertex are to
be visited. A vertex selector isaway of saying that you want to visit a bunch of vertices, as opposed
to avertex iterator which isa concrete plan for visiting each of the chosen vertices of a specific graph.

To determine the actual vertex 1Ds implied by a vertex selector, you need to apply the concept of
selecting verticesto aspecific graph object. This can be accomplished by instantiating a vertex iterator
using a specific vertex selection concept and a specific graph object. The notion of vertex iterators
can be thought of in the following way. Given a specific graph object and the class of vertices to be
visited, avertex iterator is aroad map, plan or route for how to visit the chosen vertices.

Some vertex selectors have immediate versions. These have the prefix i gr aph_vss instead of
i graph_vs,eg.i graph_vss_all () insteadof i gr aph_vs_al | () . Theimmediate versions
are to be used in the parameter list of the igraph functions, such asi gr aph_degr ee() . These

functions are not associated with any igraph_vs t object, so they have no separate constructors and
destructors (destroy functions).

Vertex selector constructors

Vertex selectors are created by vertex selector constructors, can be instantiated with
i graph_vit_create(),andaredestroyed withi gr aph_vs_destroy().

i graph_vs_al | — Vertex set, all vertices of a graph.

int igraph_vs_all (igraph_vs_t *vs);

Arguments:

vs: Pointer to an uninitialized igraph_vs t object.

Returns:

Error code.

See also:

i graph_vss_all (),igraph_vs_destroy()

226

Vertex and edge selectors
and sequences, iterators

This selector includes all vertices of agiven graph in increasing vertex id order.

Time complexity: O(1).

| graph_vs_adj — Adjacent vertices of a vertex.

int igraph_vs_adj(igraph_vs_t *vs,
i graph_integer_t vid, igraph_neinode_t node);

All neighboring vertices of a given vertex are selected by this selector. The node argument controls
the type of the neighboring vertices to be selected. The vertices are visited in increasing vertex 1D
order, as of igraph version 0.4.

Arguments:
VS: Pointer to an uninitialized vertex selector object.
vi d: Vertex ID, the center of the neighborhood.

node: Decides the type of the neighborhood for directed graphs. This parameter is ignored for
undirected graphs. Possible values:

| GRAPH_QOUT All vertices to which there is a directed edge from vi d. That is, all the
out-neighbors of vi d.

| GRAPH I N All vertices from which there is a directed edge to vi d. In other words,
al thein-neighbors of vi d.

| GRAPH_ALL All vertices to which or from which there is a directed edge from/to vi d.
That is, all the neighbors of vi d considered as if the graph is undirected.
Returns:

Error code.

See also:
i graph_vs_destroy()

Time complexity: O(1).

i graph_vs _nonadj — Non-adjacent vertices of a ver-
tex.

int igraph_vs_nonadj (i graph_vs_t *vs, igraph_integer _t vid,
i graph_nei node_t node);

All non-neighboring vertices of a given vertex. The node argument controls the type of neigh-
boring vertices not to select. Instead of selecting immediate neighbors of vi d as is done by
i graph_vs_adj (), the current function selects vertices that are not immediate neighbors of vi d.

Arguments:

VS: Pointer to an uninitialized vertex selector object.

227

Vertex and edge selectors
and sequences, iterators

vi d: Vertex ID, the “center” of the non-neighborhood.
node: Thetype of neighborhood not to select in directed graphs. Possible values:
| GRAPH_QUT All vertices will be selected except those to which thereis a directed edge
from vi d. That is, we select all vertices excluding the out-neighbors of
vi d.
| GRAPH I N All vertices will be selected except those from which there is a directed
edge to vi d. In other words, we select all vertices but the in-neighbors
of vi d.
| GRAPH_ALL All vertices will be selected except those from or to which there is a di-

rected edge to or from vi d. That is, we select all vertices of vi d except
for itsimmediate neighbors.

Returns:

Error code.

See also:
i graph_vs_destroy()

Time complexity: O(1).

Example 11.1. Fileexanpl es/ si npl e/ i graph_vs_nonadj . c

i graph_vs _none — Empty vertex set.

int igraph_vs_none(igraph_vs_ t *vs);
Creates an empty vertex selector.
Arguments:

vs: Pointer to an uninitialized vertex selector object.

Returns:

Error code.

See also:
i graph_vss_none(),igraph_vs_destroy()

Time complexity: O(1).

| graph_vs_ 1 — Vertex set with a single vertex.

int igraph_vs_1(igraph_vs_ t *vs, igraph_integer_t vid);

228

Vertex and edge selectors
and sequences, iterators

This vertex selector selects asingle vertex.
Arguments:
VS: Pointer to an uninitialized vertex selector object.

vi d: Thevertex id to be selected.

Returns:

Error Code.

See also:
i graph_vss_1(),igraph_vs_destroy()

Time complexity: O(1).

| graph_vs _vector — Vertex set based on a vector.

int igraph_vs vector(igraph vs t *vs,
const igraph_vector t *v);

Thisfunction makesit possibleto handleavector_t temporarily asavertex selector. Thevertex selector
should be thought of like a view to the vector. If you make changes to the vector that also affects the
vertex selector. Destroying the vertex selector does not destroy the vector. (Of course.) Do not destroy
the vector before destroying the vertex selector, or you might get strange behavior.

Arguments:

vs: Pointer to an uninitialized vertex selector.

V. Pointer to aigraph_vector_t object.

Returns:

Error code.

See also:
i graph_vss_vector(),igraph_vs destroy()

Time complexity: O(1).

Example 11.2. Fileexanpl es/ si npl e/ i graph_vs_vector.c

| graph_vs _vector _snal| — Create a vertex set by
giving its elements.

int igraph_vs vector_small (igraph_vs_t *vs, ...);

229

Vertex and edge selectors
and sequences, iterators

Thisfunction can be used to create a vertex selector with a couple of vertices. Do not forget to include
a- 1 after the last vertex id. The behavior of the function is undefined if you don't use a- 1 properly.

Note that the vertex ids supplied will be parsed asi nt 's so you cannot supply arbitrarily large (too
large for int) vertex ids here.

Arguments:

VS: Pointer to an uninitialized vertex selector object.
Additional parameters, thesewill bethevertex idsto beincluded in the vertex selector. Supply
a- 1 after the last vertex id.

Returns:

Error code.

See also:
i graph_vs_destroy()

Time complexity: O(n), the number of vertex ids supplied.

| graph_vs _vector copy — Vertex set based on a
vector, with copying.

int igraph_vs_vector_copy(igraph_vs_ t *vs,
const igraph_vector_t *v);

This function makes it possible to handle a vector_t permanently as a vertex selector. The vertex
selector creates a copy of the original vector, so the vector can safely be destroyed after creating the
vertex selector. Changing the original vector will not affect the vertex selector. The vertex selector is
responsible for deleting the copy made by itself.

Arguments:
vs: Pointer to an uninitialized vertex selector.

V. Pointer to aigraph_vector_t object.

Returns:

Error code.

See also:
i graph_vs_destroy()

Time complexity: O(1).

| graph_vs_seq — Vertex set, an interval of vertices.

int igraph_vs_seq(igraph_vs_t *vs,

230

Vertex and edge selectors
and sequences, iterators

i graph_integer_t from igraph_integer_t to);

Creates avertex selector containing all vertices with vertex id equal to or bigger than f r omand equal
to or smaller thant o.

Arguments:
VS: Pointer to an uninitialized vertex selector object.
from Thefirst vertex id to be included in the vertex selector.

t o: The last vertex id to be included in the vertex selector.

Returns:

Error code.

See also:
i graph_vss_seq(),igraph_vs_destroy()

Time complexity: O(1).

Example 11.3. Fileexanpl es/ si npl e/ i graph_vs_seq. c

Generic vertex selector operations

| graph_vs_copy — Creates a copy of a vertex selec-
tor.

int igraph_vs_copy(igraph_vs_t* dest, const igraph vs t* src);

Arguments:
src: The selector being copied.

dest: Anuninitialized selector that will contain the copy.

| graph_vs_destroy — Destroy a vertex set.

voi d igraph_vs_destroy(igraph_vs_t *vs);

Thisfunction should be called for all vertex selectors when they are not needed. The memory allocated
for the vertex selector will be deallocated. Do not call this function on vertex selectors created with
the immediate versions of the vertex selector constructors (starting with i gr aph_vss).

Arguments:
vs: Pointer to avertex selector object.

Time complexity: operating system dependent, usually O(1).

231

Vertex and edge selectors
and sequences, iterators

i graph_vs is _all — Check whether all vertices are
included.

i graph_bool _t igraph_vs_is_all(const igraph_vs_t *vs);

This function checks whether the vertex selector object was created by i graph_vs_al | () or
i graph_vss_al | (). Notethat the vertex selector might contain al verticesin a given graph but
if it wasn't created by the two constructors mentioned here the return value will be FALSE.

Arguments:

vs: Pointer to avertex selector object.

Returns:
TRUE (1) if the vertex selector contains all vertices and FALSE (0) otherwise.

Time complexity: O(1).

| graph_vs_si ze — Returns the size of the vertex se-
lector.

int igraph_vs_size(const igraph_t *graph, const igraph_vs_t *vs,
i graph_integer_t *result);

The size of the vertex selector isthe number of verticesit will yield when it isiterated over.
Arguments:
graph: The graph over which we will iterate.

result: Theresult will bereturned here.

| graph_vs_type — Returns the type of the vertex se-
lector.

int igraph_vs_ type(const igraph_vs t *vs);

Immediate vertex selectors

| graph_vss_al |l — All vertices of a graph (immediate
version).

232

Vertex and edge selectors
and sequences, iterators

i graph_vs_t igraph_vss_all (void);

Immediate vertex selector for al verticesin a graph. It can be used conveniently when some vertex
property (e.g. betweenness, degree, etc.) should be calculated for all vertices.

Returns:

A vertex selector for all verticesin agraph.

See also:
igraph_vs_all ()

Time complexity: O(1).

| graph_vss_none — Empty vertex set (immediate
version).

i graph_vs_t igraph_vss_none(void);
Theimmediate version of the empty vertex selector.
Returns:

An empty vertex selector.

See also:
i graph_vs_none()

Time complexity: O(1).

| graph_vss_ 1 — Vertex set with a single vertex (im-
mediate version).

igraph_vs t igraph_vss_ 1(igraph_integer_t vid);
The immediate version of the single-vertex selector.
Arguments:

vi d: The vertex to be selected.

Returns:

A vertex selector containing asingle vertex.

See also:
i graph_vs_1()

Time complexity: O(1).

233

Vertex and edge selectors
and sequences, iterators

| graph_vss_vect or — Vertex set based on a vector
(immediate version).

i graph_vs t igraph_vss vector(const igraph _vector_ t *v);
Thisistheimmediate version of i gr aph_vs_vect or.
Arguments:

v: Pointer to aigraph_vector_t object.

Returns:

A vertex selector object containing the verticesin the vector.

See also:
i graph_vs_vector ()

Time complexity: O(1).

| graph_vss_seq — An interval of vertices (immediate
version).

i graph_vs_t igraph_vss_seq(igraph_integer_t from igraph_integer_t to);
Theimmediate version of i gr aph_vs_seq() .

Arguments:

from Thefirst vertex id to beincluded in the vertex selector.

t o: The last vertex id to be included in the vertex selector.

Returns:

Error code.

See also:
i graph_vs_seq()

Time complexity: O(1).

Vertex iterators

| graph_vit _create — Creates a vertex iterator from
a vertex selector.

234

Vertex and edge selectors
and sequences, iterators

int igraph_vit_create(const igraph_t *graph,
igraph_vs_t vs, igraph_vit_t *vit);

This function instantiates a vertex selector object with a given graph. Thisis the step when the actual
vertex ids are created from the logical notion of the vertex selector based on the graph. E.g. a vertex
selector created withi gr aph_vs_al | () containsknowledgethat all verticesareincluded in a(yet
indefinite) graph. When instantiating it avertex iterator object iscreated, this containsthe actual vertex
idsin the graph supplied as a parameter.

The same vertex selector object can be used to instantiate any number vertex iterators.
Arguments:

graph: Anigraph_t object, agraph.

VS: A vertex selector object.

vit: Pointer to an uninitialized vertex iterator object.

Returns:

Error code.

See also:

i graph_vit _destroy().
Time complexity: it depends on the vertex selector type. O(1) for vertex selectors creat-
ed withi graph_vs_all (),igraph_vs_none(),igraph_vs_1,igraph_vs_vector,
i graph_vs_seq(), i graph_vs_vector(), i graph_vs_vector_small (). O(d) for

i graph_vs_adj (), d is the number of vertex ids to be included in the iterator. O(|V|) for
i graph_vs_nonadj (), |V|]isthe number of verticesin the graph.

| graph_vit _destroy — Destroys a vertex iterator.

void igraph_vit_destroy(const igraph_vit_t *vit);

Deallocates memory allocated for a vertex iterator.
Arguments:

vit: Pointer toaninitialized vertex iterator object.

See also:
i graph_vit_create()
Time complexity: operating system dependent, usually O(1).
Stepping over the vertices
After creating an iterator with i graph_vit _create(), it points to the first vertex in the

vertex determined by the vertex selector (if there is any). The | GRAPH VI T_NEXT() macro
steps to the next vertex, | GRAPH VI T_END() checks whether there are more vertices to vis-

235

Vertex and edge selectors
and sequences, iterators

it, | GRAPH VI T_SI ZE() gives the total size of the vertices visited so far and to be visit-
ed. | GRAPH VI T_RESET() resets the iterator, it will point to the first vertex again. Final-
ly | GRAPH VI T_GET() gives the current vertex pointed to by the iterator (call this only if
| GRAPH VI T_ENIX) isfalse).

Here is an example on how to step over the neighbors of vertex O:

i graph_vs_t vs;

igraph_vit_t vit;

i graph_vs_adj (&vs, 0, | GRAPH ALL);

i graph_vit_create(&graph, vs, &vit);

while (!l GRAPH VIT_END(vit)) {
printf(" %i", (long int) IGRAPH VIT_GET(vit));
| GRAPH VI T_NEXT(vit);

}

printf("\n");

i graph_vit_destroy(&vit);
i graph_vs_destroy(&vs);

| GRAPH VI T_NEXT — Next vertex.

#define | GRAPH VI T_NEXT(vit)

Steps theiterator to the next vertex. Only call thisfunction if | GRAPH_VI T_END() returnsfalse.
Arguments:

vit: Thevertex iterator to step.

Time complexity: O(1).

| GRAPH VI T_END— Are we at the end?

#define | GRAPH VI T_END(vit)
Checks whether there are more vertices to step to.
Arguments:

vit: Thevertex iterator to check.

Returns:
Logical value, if true there are no more vertices to step to.

Time complexity: O(1).

| GRAPH VI T_SI ZE — Size of a vertex iterator.

236

Vertex and edge selectors
and sequences, iterators

#define | GRAPH VI T_SI ZE(vi t)
Gives the number of verticesin avertex iterator.
Arguments:

vit: Thevertex iterator.

Returns:
The number of vertices.

Time complexity: O(1).

| GRAPH VI T_RESET — Reset a vertex iterator.

#define | GRAPH VI T_RESET(vit)

Resets a vertex iterator. After calling this macro the iterator will point to the first vertex.
Arguments:

vit: Thevertex iterator.

Time complexity: O(1).

| GRAPH VI T_GET — Query the current position.

#define | GRAPH VI T_GET(vit)
Givesthe vertex id of the current vertex pointed to by the iterator.
Arguments:

vit: Thevertex iterator.

Returns:
The vertex id of the current vertex.

Time complexity: O(1).

Edge selector constructors

| graph_es_al | — Edge set, all edges.

int igraph_es_all(igraph_es_ t *es,
i gr aph_edgeorder _type_t order);

Arguments:

237

Vertex and edge selectors
and sequences, iterators

es: Pointer to an uninitialized edge selector object.

order: Constant giving the order in which the edges will beincluded in the selector. Possible val-
ues: | GRAPH_EDGEORDER_| D, edge id order. | GRAPH_EDGEORDER_FROM vertex
id order, the id of the source vertex counts for directed graphs. The order of the incident
edges of a given vertex is arbitrary. | GRAPH_EDGEORDER_TO, vertex id order, the id
of the target vertex counts for directed graphs. The order of the incident edges of agiven
vertex is arbitrary. For undirected graph the latter two is the same.

Returns:

Error code.

See also:
i graph_ess_all(),igraph_es_destroy()
Time complexity: O(1).
| graph_es_i nci dent — Edges incident on a given
vertex.

int igraph_es_incident(igraph_es t *es,
i graph_integer_t vid, igraph_neinode_t node);

Arguments:

es: Pointer to an uninitialized edge selector object.

vi d: Vertex id, of which the incident edges will be selected.

node: Constant giving the type of the incident edges to select. This is ignored for undirected
graphs. Possible values: | GRAPH_OUT, outgoing edges; | GRAPH | N, incoming edges,
| GRAPH_ALL, all edges.

Returns:

Error code.

See also:
i graph_es_destroy()

Time complexity: O(1).

| graph_es_none — Empty edge selector.

int igraph_es_none(igraph_es_t *es);

Arguments:

238

Vertex and edge selectors
and sequences, iterators

es: Pointer to an uninitialized edge selector object to initialize.

Returns:

Error code.

See also:
i graph_ess_none(),igraph_es_destroy()

Time complexity: O(1).

| graph_es_1 — Edge selector containing a single
edge.

int igraph_es_1(igraph_es_t *es, igraph_integer_t eid);

Arguments:
es: Pointer to an uninitialized edge selector object.

ei d: Edgeid of the edge to select.

Returns:

Error code.

See also:
i graph_ess_1(),igraph_es_destroy()

Time complexity: O(1).

| graph_es_vect or — Handle a vector as an edge se-
lector.

int igraph_es_vector(igraph_es_t *es,
const igraph_vector_t *v);

Creates an edge selector which serves as a view to a vector containing edge ids. Do not destroy the
vector before destroying the view. Many views can be created to the same vector.

Arguments:

es: Pointer to an uninitialized edge selector.

V! Vector containing edge ids.

Returns:

239

Vertex and edge selectors
and sequences, iterators

Error code.

See also:
i graph_ess_vector(),igraph_es_destroy()

Time complexity: O(1).

| graph_es _front o — Edge selector, all edges be-
tween two vertex sets.

int igraph_es_fromo(igraph_es_t *es,
igraph_vs_t from igraph_vs_t to);
This function is not implemented yet.
Arguments:
es: Pointer to an uninitialized edge selector.
from Vertex selector, their outgoing edges will be selected.

to: Vertex selector, their incoming edges will be selected from the previous selection.

Returns:

Error code.

See also:
i graph_es_destroy()

Time complexity: O(1).

| graph_es_seq — Edge selector, a sequence of edge
ids.

int igraph_es _seq(igraph_es t *es,
igraph_integer t from igraph_integer t to);

All edge ids between f r omand t o will be included in the edge selection. This includes f r omand
excludest o.

Arguments:
es: Pointer to an uninitialized edge selector object.
from Thefirst edgeid to be included.

t o: Thelast edgeid to be included.

240

Vertex and edge selectors
and sequences, iterators

Returns:

Error code.

See also:
i graph_ess_seq(),i graph_es_destroy()

Time complexity: O(1).

| graph_es_pai rs — Edge selector, multiple edges
defined by their endpoints in a vector.

int igraph_es_pairs(igraph_es_t *es, const igraph_vector_t *v,
i graph_bool _t directed);

The edges between the given pairs of vertices will be included in the edge selection. The vertex pairs
must be defined in the vector v, the first element of the vector isthe first vertex of the first edge to be
selected, the second element is the second vertex of the first edge, the third element is the first vertex
of the second edge and so on.

Arguments:
es: Pointer to an uninitialized edge selector object.
V! The vector containing the endpoints of the edges.

di rected: Whether the graph isdirected or not.

Returns:

Error code.

See also:
i graph_es pairs_small (),igraph_es_destroy()

Time complexity: O(n), the number of edges being selected.

Example 11.4. Fileexanpl es/ si npl e/ i graph_es pairs.c

| graph_es_pairs_smal | — Edge selector, multiple
edges defined by their endpoints as arguments.

int igraph_es pairs_small (igraph_es t *es, igraph_bool t directed,

The edges between the given pairs of vertices will beincluded in the edge selection. The vertex pairs
must be given as the arguments of the function call, the third argument is the first vertex of the first
edge, the fourth argument isthe second vertex of thefirst edge, thefifth isthefirst vertex of the second
edge and so on. Thelast element of the argument list must be -1 to denote the end of the argument list.

Arguments:

241

Vertex and edge selectors
and sequences, iterators

es: Pointer to an uninitialized edge selector object.

di rected: Whether the graph isdirected or not.

Returns:

Error code.

See also:
i graph_es_pairs(),igraph_es_destroy()

Time complexity: O(n), the number of edges being selected.

| graph_es_pat h — Edge selector, edge ids on a
path.

int igraph_es path(igraph_es_t *es, const igraph_vector t *v,
i graph_bool t directed);

This function takes a vector of vertices and creates a selector of edges between those vertices. Vector
{0, 3, 4, 7} will select edges (0 -> 3), (3->4), (4-> 7). If these edges don't exist then trying to create
an iterator using this selector will fail.

Arguments:
es: Pointer to an uninitialized edge selector object.
v Pointer to a vector of vertex id's along the path.

di rected: If edge directions should be taken into account. This will be ignored if the graph to
select from is undirected.
Returns:

Error code.

See also:
i graph_es_destroy()

Time complexity: O(n), the number of vertices.

| graph_es _vector copy — Edge set, based on a
vector, with copying.

int igraph_es_vector_copy(igraph_es t *es, const igraph_vector_t *v);

Thisfunction makesit possibleto handle avector_t permanently as an edge selector. The edge selector
creates a copy of the original vector, so the vector can safely be destroyed after creating the edge
selector. Changing the original vector will not affect the edge selector. The edge selector isresponsible
for deleting the copy made by itself.

242

Vertex and edge selectors
and sequences, iterators

Arguments:
es: Pointer to an uninitialized edge selector.

V: Pointer to aigraph_vector_t object.

Returns:

Error code.

See also:
i graph_es_destroy()

Time complexity: O(1).

Immediate edge selectors

| graph_ess_al | — Edge set, all edges (immediate
version)

i graph_es t igraph_ess_all (igraph_edgeorder type t order);

Theimmediate version of the all-edges selector.

Arguments:

order: Constant giving the order of the edgesin the edge selector. Seei gr aph_es_al | () for
the possible values.

Returns:

The edge selector.

See also:
i graph_es_all ()

Time complexity: O(1).

| gr aph_ess_none — Immediate empty edge selector.

i graph_es_t igraph_ess_none(void);

Immediate version of the empty edge selector.
Returns:

Initialized empty edge selector.

243

Vertex and edge selectors
and sequences, iterators

See also:
i graph_es_none()
Time complexity: O(1).
| graph_ess_1 — Immediate version of the single
edge edge selector.

i graph_es t igraph_ess_1(igraph_integer_t eid);

Arguments:

ei d: Theid of the edge.

Returns:

The edge selector.

See also:
i graph_es_1()

Time complexity: O(1).

| graph_ess_vect or — Immediate vector view edge
selector.

i graph_es_t igraph_ess vector(const igraph _vector_t *v);

Thisisthe immediate version of the vector of edge ids edge selector.
Arguments:

v: Thevector of edgeids.

Returns:

Edge selector, initialized.

See also:
i graph_es_vector ()

Time complexity: O(1).

| graph_ess_seq — Immediate version of the se-
guence edge selector.

244

Vertex and edge selectors
and sequences, iterators

i graph_es_t igraph_ess_seq(igraph_integer_t from

Arguments:
from Thefirst edgeid toinclude.

t o: Thelast edgeid to include.

Returns:

The initialized edge selector.

See also:
i graph_es_seq()

Time complexity: O(1).

Generic edge selector operations

i graph_integer_t to);

| graph_es_as_vector — Transform edge selector

into vector.

int igraph_es_as_vector(const igraph_t *graph, igraph_es t es,

i graph_vector_t *v);

Call this function on an edge selector to transform it into a vector. This is only implemented for
sequence and vector selectors. If the edges do not exist in the graph, thiswill result in an error.

Arguments:

graph: Pointer to agraph to check if the edges in the selector exist.
es: An edge selector object.

V! Pointer to initialized vector. The result will be stored here.

Time complexity: O(n), the number of edgesin the selector.

| graph_es_copy — Creates a copy of an edge selec-

tor.

int igraph_es _copy(igraph_es t* dest, const igraph_es t* src);

Arguments:
src: The selector being copied.

dest: Anuninitialized selector that will contain the copy.

245

Vertex and edge selectors
and sequences, iterators

See also:

i graph_es_destroy()

| graph_es_dest roy — Destroys an edge selector ob-
ject.

void igraph_es _destroy(igraph_es t *es);

Call this function on an edge selector when it is not needed any more. Do not call this function on
edge selectors created by immediate constructors, those don't need to be destroyed.

Arguments:

es: Pointer to an edge selector object.

Time complexity: operating system dependent, usually O(1).

| graph_es is _all — Check whether an edge selec-
tor includes all edges.

i graph_bool t igraph_es is all(const igraph_es t *es);

Arguments:

es: Pointer to an edge selector object.

Returns:

TRUE (1) if es was created with i gr aph_es_al | () ori graph_ess_all (), and FALSE
(0) otherwise.

Time complexity: O(1).

| graph_es_si ze — Returns the size of the edge se-
lector.

int igraph_es_size(const igraph_t *graph, const igraph_es_t *es,
i graph_integer_t *result);

The size of the edge selector is the number of edgesit will yield when it isiterated over.
Arguments:
graph: The graph over which we will iterate.

resul t: Theresult will bereturned here.

246

Vertex and edge selectors
and sequences, iterators

| graph_es_type — Returns the type of the edge se-
lector.

int igraph_es_type(const igraph_es_t *es);

Edge iterators

| graph_eit _create — Creates an edge iterator from
an edge selector.

int igraph_eit _create(const igraph_t *graph,
igraph_es t es, igraph eit_t *eit);
This function creates an edge iterator based on an edge selector and a graph.
The same edge selector can be used to create many edge iterators, also for different graphs.
Arguments:
graph: Anigraph_t object for which the edge selector will be instantiated.
es: The edge selector to instantiate.

eit: Pointer to an uninitialized edge iterator.

Returns:

Error code.

See also:

i graph_eit_destroy()
Time complexity: depends on the type of the edge selector. For edge selectors creat-
ed by igraph_es_all (), igraph_es_none(), igraph_es_1(), igraph es vector(),

igraph_es seq() itisO(1). Fori graph_es_i nci dent () itisO(d) where d is the number of in-
cident edges of the vertex.

| graph_eit _destroy — Destroys an edge iterator.

void igraph_eit_destroy(const igraph_eit_t *eit);

Arguments:

ei t: Pointer to an edge iterator to destroy.

247

Vertex and edge selectors
and sequences, iterators

See also:
i graph_eit_create()

Time complexity: operating system dependent, usually O(1).

Stepping over the edges

Just like for vertex iterators, macros are provided for stepping over a sequence of edges:
| GRAPH _EI T_NEXT() goes to the next edge, | GRAPH_EI T_END() checks whether there are
more edges to visit, | GRAPH _EI T_SI ZE() gives the number of edges in the edge sequence,
| GRAPH _EI T_RESET() resetstheiterator to thefirst edgeand | GRAPH _EI T_GET() returnsthe
id of the current edge.

| GRAPH_EI T_NEXT — Next edge.

#define | GRAPH EI T_NEXT(eit)

Steps the iterator to the next edge. Call thisfunction only if | GRAPH_ElI T_END() returnsfalse.
Arguments:

ei t: Theedgeiterator to step.

Time complexity: O(1).

| GRAPH EI T_END — Are we at the end?

#define | GRAPH EIT_END(eit)
Checks whether there are more edges to step to.
Arguments:

wi t: Theedgeiterator to check.

Returns:
Logical value, if true there are no more edgesto step to.

Time complexity: O(1).

| GRAPH _EI T_SI ZE — Number of edges in the iterator.

#define | GRAPH EI T_SI ZE(ei t)
Gives the number of edgesin an edge iterator.
Arguments:

eit: Theedgeiterator.

248

Vertex and edge selectors
and sequences, iterators

Returns:
The number of edges.

Time complexity: O(1).

| GRAPH EI T_RESET — Reset an edge iterator.

#define | GRAPH EI T_RESET(eit)

Resets an edge iterator. After calling this macro the iterator will point to the first edge.
Arguments:

ei t: Theedgeiterator.

Time complexity: O(1).

| GRAPH EI T_GET — Query an edge iterator.

#define | GRAPH EI' T _GET(eit)
Givesthe edge id of the current edge pointed to by an iterator.
Arguments:

ei t: Theedgeiterator.

Returns:
Theid of the current edge.

Time complexity: O(1).

249

Chapter 12. Graph, vertex and edge
attributes

Attributes are numbers or strings (or basically any kind of data) associated with the vertices or edges
of agraph, or with the graph itself. Eg. you may label verticeswith symbolic names or attach numeric
weights to the edges of a graph.

igraph attributes are designed to be flexible and extensible. In igraph attributes are implemented via
an interface abstraction: any type implementing the functions in the interface, can be used for storing
vertex, edge and graph attributes. This means that different attribute implementations can be used
together with igraph. Thisisreasonable: if igraph is used from Python attributes can be of any Python
type, from GNU R al R types are allowed. There is an experimental attribute implementation to be
used when programming in C, but by default it is currently turned off.

First webriefly look over how attribute handlers can beimplemented. Thisisnot something auser does
every day. It israther typically the job of the high level interface writers. (But it is possible to write
an interface without implementing attributes.) Then we show the experimental C attribute handler.

The Attribute Handler Interface

It is possible to attach an attribute handling interface to igraph. Thisis simply atable of functions, of
typei graph_attri but e_t abl e_t . Thesefunctionsareinvoked to notify the attribute handling
code about the structural changesin a graph. See the documentation of thistype for details.

By default there is no attribute interface attached to igraph, to attach one, call i gr aph_set _at -
tri bute_tabl e with your new table.

i graph_attribute table t — Table of functions to
perform operations on attributes

typedef struct igraph_attribute table t {
int (*init)(igraph_t *graph, igraph vector ptr_t *attr);
void (*destroy)(igraph_t *graph);
int (*copy)(igraph_t *to, const igraph_t *from igraph_bool t ga,
i graph_bool t va, igraph_bool t ea);
int (*add vertices)(igraph_t *graph, long int nv, igraph vector ptr _t
int (*permute_vertices)(const igraph_t *graph
i graph_t *newgraph,
const igraph_vector_t *idx);
int (*conbine vertices)(const igraph_t *graph
i graph_t *newgraph,
const igraph_vector_ptr_t *nerges,
const igraph_attribute conbination_ t *comb);
int (*add_edges) (i graph_t *graph, const igraph_vector t *edges,
i graph_vector _ptr_t *attr);
int (*permute_edges)(const igraph_t *graph
i graph_t *newgraph, const igraph vector _t *idx);
i nt (*conbi ne_edges)(const igraph_t *graph
i graph_t *newgraph,
const igraph_vector_ptr_t *nerges,
const igraph_attribute conbination_ t *comb);
int (*get_info)(const igraph_t *graph

250

*attr)

Graph, vertex and edge attributes

i graph_strvector _t *gnanes, igraph_vector_t *gtypes,
i graph_strvector _t *vnanes, igraph_vector_t *vtypes,
i graph_strvector _t *enanes, igraph_vector_t *etypes);
i graph_bool _t (*has_attr)(const igraph_t *graph, igraph_attribute_el emtype_
const char *nane);
int (*gettype)(const igraph_t *graph, igraph_attribute type t *type,
igraph_attribute_elentype t el entype, const char *nane);
int (*get_numeric_graph_attr)(const igraph_t *graph, const char *nane,
i graph_vector_t *val ue);
int (*get_string _graph_attr)(const igraph_t *graph, const char *nane,
i graph_strvector _t *val ue);
int (*get_bool graph_attr)(const igraph_t *igraph, const char *nane,
i graph_vector_bool _t *val ue);
int (*get_numeric_vertex_attr)(const igraph_t *graph, const char *nane,
i graph_vs_t vs,
i graph_vector_t *val ue);
int (*get_string vertex_attr)(const igraph_t *graph, const char *nane,
i graph_vs_t vs,
i graph_strvector_t *val ue);
int (*get_bool vertex_attr)(const igraph_t *graph, const char *nane,
i graph_vs_t vs,
i graph_vector_bool _t *val ue);
int (*get_nuneric_edge_attr)(const igraph_t *graph, const char *nane,
i graph_es_t es,
i graph_vector_t *val ue);
int (*get_string_edge_attr)(const igraph_t *graph, const char *nane,
i graph_es_t es,
i graph_strvector _t *val ue);
int (*get_bool edge_attr)(const igraph_t *graph, const char *nane,
i graph_es_t es,
i graph_vector_bool _t *val ue);
} igraph_attribute_table t;

This type collects the functions defining an attribute handler. It has the following members:

Values:

init: This function is called whenever a new graph object is cre-
ated, right after it is created but before any vertices or edges
are added. It is supposed to set the attr member of the
i graph_t object. It is expected to return an error code.

destroy: Thisfunction is called whenever the graph object is destroyed,
right before freeing the allocated memory.

copy: This function is called when copying a graph with
i gr aph_copy, after the structure of the graph has been al-
ready copied. It is expected to return an error code.

add_vertices: Called when vertices are added to a graph, before adding the
vertices themselves. The number of verticesto add is supplied
as an argument. Expected to return an error code.

permute_vertices: Typically called when a new graph is created based on an ex-

isting one, e.g. if vertices are removed from a graph. The sup-
plied index vector defineswhich old vertex anew vertex corre-
spondsto. Itslength must be the same asthe number of vertices
in the new graph.

251

Graph, vertex and edge attributes

conbi ne_verti ces:

add_edges:

per mut e_edges:

conbi ne_edges:

get _i nfo:

has_attr:

get t ype:

get _numeric_graph_attr:

get _string_graph_attr:

get _bool graph_attr:

get _numeric_vertex_attr:

get _string vertex_ attr:

get _bool vertex_ attr:

get _nuneric_edge_attr:
get _string_edge_attr:

get _bool edge_attr:

This function is called when the creation of a new graph in-
volves a merge (contraction, etc.) of vertices from another
graph. The function is after the new graph was created. An ar-
gument specifies how several vertices from the old graph map
to asingle vertex in the new graph.

Called when new edges have been added. The number of new
edgesare supplied aswell. It isexpected to return an error code.

Typically caled when a new graph is created and some of the
new edges should carry the attributes of some of the old edges.
The idx vector shows the mapping between the old edges and
the new ones. Its length is the same as the number of edgesin
the new graph, and for each edge it givestheid of the old edge
(the edge in the old graph).

This function is called when the creation of a new graph in-
volves amerge (contraction, etc.) of edges from another graph.
The function is after the new graph was created. An argument
specifies how several edges from the old graph map to asingle
edge in the new graph.

Query the attributes of a graph, the names and types should be
returned.

Check whether a graph has the named graph/vertex/edge at-
tribute.

Query the type of a graph/vertex/edge attribute.

Query anumeric graph attribute. The value should be placed as
the first element of the val ue vector.

Query a string graph attribute. The value should be placed as
the first element of theval ue string vector.

Query aboolean graph attribute. The value should be placed as
the first element of the val ue boolean vector.

Query a numeric vertex attribute, for the vertices included in
VS.

Query astring vertex attribute, for the verticesincluded invs.

Query a boolean vertex attribute, for the vertices included in
VS.

Query anumeric edge attribute, for the edgesincludedin es.
Query a string edge attribute, for the edgesincluded in es.

Query a boolean edge attribute, for the edgesincluded in es.

Note that theget _* * attr arealowed to convert the attributes to numeric or string. E.g. if a
vertex attribute is a GNU R complex data type, then get _string vertex_attri bute may
seridizeitinto astring, but thisprobably makessenseonly if add_ver ti ces isableto deseridizeit.

| graph_set _attribute_tabl e— Attach an attribute
table.

252

Graph, vertex and edge attributes

igraph_attribute_table t *
i graph_set _attribute_table(const igraph_attribute table t * table);

Thisfunction attaches attribute handling codeto theigraph library. Note that the attribute handler table
is not thread-local even if igraph is compiled in thread-local mode. In the vast majority of cases, this
isnot asignificant restriction.

Arguments:
tabl e: Pointertoanigraph_attribute_tabl e t object containing the functions for at-
tribute manipulation. Supply NULL here if you don't want attributes.
Returns:
Pointer to the old attribute handling table.

Time complexity: O(1).

| graph_attri bute type t — The possible types of
the attributes.

t ypedef enum { | GRAPH_ATTRI BUTE_DEFAULT
| GRAPH_ATTRI BUTE_NUMERI C
| GRAPH_ATTRI BUTE_BOOLEAN
| GRAPH_ATTRI BUTE_STRI NG = 2,
| GRAPH_ATTRI BUTE_R OBJECT = 3,
| GRAPH_ATTRI BUTE_PY_OBJECT = 4

} igraph_attribute_type t;

I nn
O~ O

Note that thisis only the type communicated by the attribute interface towards igraph functions. Eg.
inthe GNU R attribute handler, it is safe to say that all complex R object attributes are strings, aslong
asthisinterfaceis ableto serialize them into strings. Seeasoi graph_attri bute table_t.

Values:

| GRAPH_ATTRI BUTE_DE- Currently not used for anything.
FAULT:

| GRAPH_ATTRI BUTE_NU- Numeric attribute.

VERI C:

| GRAPH_AT- Logical values, true or false.

TRI BUTE_BOOLEAN:
| GRAPH_ATTRI BUTE_STRI NG Attribute that can be converted to a string.

| GRAPH_ATTRI BUTE_R OB- An R object. Thisisusually ignored by the igraph functions.
JECT:

| GRAPH_ATTRI BUTE_PY_OB- A Python object. Usually ignored by the igraph functions.
JECT:

Handling attribute combination lists

Several graph operations may collapse multiple vertices or edges into a single one. Attribute combi-
nation lists are used to indicate to the attribute handler how to combine the attributes of the original

253

Graph, vertex and edge attributes

vertices or edges and how to derive the final attribute value that is to be assigned to the collapsed
vertex or edge. For example, i gr aph_si npl i f y() removesloops and combines multiple edges
into a single one; in case of a graph with an edge attribute named wei ght the attribute combination
list can tell the attribute handler whether the weight of a collapsed edge should be the sum, the mean
or some other function of the weights of the original edges that were collapsed into one.

One attribute combination list may contain several attribute combination records, one for each vertex
or edge attribute that isto be handled during the operation.

i graph_attri bute _conbi nati on_init — Initialize
attribute combination list.

int igraph_attribute conbination_init(igraph_attribute conbination_t *conb);

Arguments:

conb: Theuninitialized attribute combination list.

Returns:
Error code.

Time complexity: O(1)

i graph_attri bute_conbi nati on_add — Add com-
bination record to attribute combination list.

int igraph_attribute_conbination_add(igraph_attribute _combi nation_t *conb,
const char *nane,
i graph_attribute_conbination_type t type,
i graph_function_pointer_t func);
Arguments:

conb: The attribute combination list.

nane: The name of the attribute. If the name already exists the attribute combination record will
be replaced. Use NULL to add a default combination record for al atributes not in the list.

type: The type of the attribute combination. See igraph_attri bute_conbi na-
tion_type_t fortheoptions.

func: Functiontobeusediftypeisl GRAPH _ATTRI BUTE_COVBI NE_FUNCTI ON.

Returns:
Error code.

Time complexity: O(n), where n is the number of current attribute combinations.

254

Graph, vertex and edge attributes

i graph_attri bute _conbi nati on_renove — Re-
move a record from an attribute combination list.

int igraph_attribute_conbination_renove(igraph_attribute_conmbination_t *conb,
const char *nane);

Arguments:

conb: The attribute combination list.

name: The attribute name of the attribute combination record to remove. It will be ignored if the
named attribute does not exist. It can be NULL to remove the default combination record.

Returns:
Error code. This currently always returns IGRAPH_SUCCESS.

Time complexity: O(n), where n is the number of records in the attribute combination list.

| graph_attri bute_conbi nati on_destroy — De-
stroy attribute combination list.

void igraph_attribute_conbination_destroy(igraph _attribute_conbination_t *conb)

Arguments:
conb: Theattribute combination list.

Time complexity: O(n), where n is the number of records in the attribute combination list.

i graph_attri bute _conbi nation_type t —The
possible types of attribute combinations.

t ypedef enum {
| GRAPH_ATTRI BUTE_COMBI NE_I GNORE = 0,
| GRAPH_ATTRI BUTE_COMBI NE_DEFAULT = 1,
| GRAPH_ATTRI BUTE_COMBI NE_FUNCTI ON = 2,
| GRAPH_ATTRI BUTE_COMBI NE_SUM = 3,
| GRAPH_ATTRI BUTE_COVBI NE_PROD = 4,
| GRAPH_ATTRI BUTE_COVMBI NE_ M N = 5,
| GRAPH_ATTRI BUTE_COVBI NE_MAX = 6,
| GRAPH_ATTRI BUTE_COVBI NE_RANDOM = 7,
| GRAPH_ATTRI BUTE_COMBI NE_FI RST = 8,
| GRAPH_ATTRI BUTE_COMBI NE_LAST = 9,
| GRAPH_ATTRI BUTE_COMBI NE_MEAN = 10,
| GRAPH_ATTRI BUTE_COVBI NE_MEDI AN = 11,
| GRAPH_ATTRI BUTE_COVBI NE_CONCAT = 12
} igraph_attribute _conmbination type t;

255

Graph, vertex and edge attributes

Values:

| GRAPH_ATTRI BUTE_COM
Bl NE_| GNORE:

| GRAPH_ATTRI BUTE_COW
BI NE_DEFAULT:

| GRAPH_ATTRI BUTE_COV
Bl NE_FUNCTI ON:

| GRAPH_ATTRI BUTE_COM
Bl NE_SUM

| GRAPH_ATTRI BUTE_COM
Bl NE_PROD:

| GRAPH_ATTRI BUTE_COM
BI NE_M N:

| GRAPH_ATTRI BUTE_COW
Bl NE_MAX:

| GRAPH_ATTRI BUTE_COV
Bl NE_RANDOM

| GRAPH_ATTRI BUTE_COM
Bl NE_FI RST:

| GRAPH_ATTRI BUTE_COM
Bl NE_LAST:

| GRAPH_ATTRI BUTE_COW
Bl NE_MEAN:

| GRAPH_ATTRI BUTE_COV
Bl NE_MEDI AN:

| GRAPH_ATTRI BUTE_COM
Bl NE_CONCAT:

Ignore old attributes, use an empty value.

Use the default way to combine attributes (decided by the at-

tribute handler implementation).

Supply your own function to combine attributes.

Take the sum of the attributes.

Take the product of the attributes.

Take the minimum attribute.

Take the maximum attribute.

Take arandom attribute.

Take thefirst attribute.

Take the last attribute.

Take the mean of the attributes.

Take the median of the attributes.

Concatenate the attributes.

Accessing attributes from C

Thereis an experimental attribute handler that can be used from C code. In this section we show how
this works. This attribute handler is by default not attached (the default is no attribute handler), so
we first need to attach it:

i graph_set _attribute tabl e(& graph_cattribute table);

Now the attribute functions are available. Please note that the attribute handler must be attached before
you call any other igraph functions, otherwise you might end up with graphs without attributes and
an active attribute handler, which might cause unexpected program behaviour. The rule is that you
attach the attribute handler in the beginning of your mai n() and never touch it again. (Detaching the
attribute handler might lead to memory leaks.)

Itisnot currently possible to have attribute handlers on a per-graph basis. All graphsin an application
must be managed with the same attribute handler. (Including the default case when thereis no attribute
handler at all.

256

Graph, vertex and edge attributes

The C attribute handler supports attaching real numbers and character strings as attributes. No vectors
are adlowed, i.e. every vertex might have an attribute called nane, but it is not possible to have a
coor ds graph (or other) attribute which is a vector of numbers.

Example 12.1. Fileexanpl es/ si npl e/ cattributes.c
Example 12.2. Fileexanpl es/ si npl e/ cattri butes2.c
Example 12.3. Fileexanpl es/ si npl e/ cattri butes3.c

Example 12.4. Fileexanpl es/ si npl e/ cattri butes4.c

Query attributes

I graph_cattribute_|ist —Listall attributes

int igraph_cattribute list(const igraph_t *graph,
i graph_strvector _t *gnanes, igraph_vector_t *gtypes,
i graph_strvector _t *vnanes, igraph_vector_t *vtypes,
i graph_strvector _t *enanes, igraph_vector_t *etypes).

Seei graph_attri bute_type_t forthevarious attribute types.

Arguments:

gr aph: The input graph.

ghanes: String vector, the names of the graph attributes.

gtypes: Numeric vector, the types of the graph attributes.

vnanes: String vector, the names of the vertex attributes.

vtypes: Numeric vector, the types of the vertex attributes.

enanes: String vector, the names of the edge attributes.

etypes: Numeric vector, the types of the edge attributes.

Returns:
Error code.

Naturally, the string vector with the attribute names and the numeric vector with the attribute types
areintheright order, i.e. the first name corresponds to thefirst type, etc. Time complexity: O(Ag+Av
+Ae), the number of al attributes.

I graph_cattribute _has_attr — Checks whether a (graph,
vertex or edge) attribute exists

257

Graph, vertex and edge attributes

i graph_bool _t igraph_cattribute_has_attr(const igraph_t *graph,
igraph_attribute_elentype_ t type,
const char *nane);

Arguments:

graph: Thegraph.

type: The type of the attribute, | GRAPH _ATTRI BUTE GRAPH, | GRAPH_AT-
TRI BUTE_VERTEX or | GRAPH_ATTRI BUTE_EDGE.

name: Character constant, the name of the attribute.

Returns:
Logical value, TRUE if the attribute exists, FAL SE otherwise.

Time complexity: O(A), the number of (graph, vertex or edge) attributes, assuming attribute names
are not too long.

i graph_cattribute GAN— Query a numeric graph attribute.

i graph_real t igraph_cattribute_ GAN(const igraph_t *graph, const char *nane);

Returns the value of the given numeric graph attribute. The attribute must exist, otherwise an error
istriggered.

Arguments:
graph: Theinput graph.

nane: The name of the attribute to query.

Returns:

The value of the attribute.

See also:
GAN for asimpler interface.

Time complexity: O(Ag), the number of graph attributes.

GAN — Query a numeric graph attribute.

#def i ne GAN(graph, n)

Thisisshorthand fori graph_cattri bute_GAN() .
Arguments:

graph: Thegraph.

n: The name of the attribute.

258

Graph, vertex and edge attributes

Returns:

The value of the attribute.

| graph_cattri bute GAB— Query a boolean graph attribute.

i graph_bool _t igraph_cattribute_ GAB(const igraph_t *graph, const char *nane);

Returns the value of the given numeric graph attribute. The attribute must exist, otherwise an error
istriggered.

Arguments:
graph: Theinput graph.

name: The name of the attribute to query.

Returns:

The value of the attribute.

See also:
GAB for asimpler interface.

Time complexity: O(Ag), the number of graph attributes.

GAB — Query a boolean graph attribute.

#def i ne GAB(graph, n)

Thisisshorthand fori graph_cattri bute_ GAB().
Arguments:

graph: Thegraph.

n: The name of the attribute.

Returns:

The value of the attribute.

| graph_cattri bute GAS — Query a string graph attribute.

const char* igraph_cattribute_GAS(const igraph_t *graph, const char *nane);

Returns a const pointer to the string graph attribute specified in nane. The attribute must exist, oth-
erwise an error istriggered.

259

Graph, vertex and edge attributes

Arguments:
graph: Theinput graph.

nane: The name of the attribute to query.

Returns:

The value of the attribute.

See also:
GAS for asimpler interface.

Time complexity: O(Ag), the number of graph attributes.

GAS — Query a string graph attribute.

#def i ne GAS(graph, n)

Thisisshorthand fori graph_cattri bute_GAS().
Arguments:

graph: Thegraph.

n: The name of the attribute.

Returns:

The value of the attribute.

i graph_cattri bute VAN— Query a numeric vertex attribute.

i graph_real _t igraph_cattribute_VAN(const igraph_t *graph, const char *nane,
i graph_integer_t vid);

The attribute must exist, otherwise an error is triggered.
Arguments:

graph: Theinput graph.

nane: The name of the attribute.
vi d: Theid of the queried vertex.
Returns:

The value of the attribute.

See also:

260

Graph, vertex and edge attributes

VAN macro for asimpler interface.

Time complexity: O(Av), the number of vertex attributes.

VAN — Query a numeric vertex attribute.

#defi ne VAN(graph, n, v)
Thisis shorthand fori gr aph_cattri but e_VAN() .
Arguments:

graph: Thegraph.

n: The name of the attribute.
V: Theid of the vertex.
Returns:

The value of the attribute.

I graph_cattri bute VANV — Query a numeric vertex attribute
for many vertices

int igraph_cattribute VANV(const igraph_t *graph, const char *nane,
igraph_vs t vids, igraph_vector_t *result);

Arguments:

gr aph: The input graph.

name: The name of the attribute.

vi ds: The vertices to query.

resul t: Pointer to aninitialized vector, the result is stored here. It will be resized, if needed.

Returns:
Error code.

Time complexity: O(v), where v isthe number of verticesin 'vids.

VANV — Query a numeric vertex attribute for all vertices.

#defi ne VANV(graph, n, vec)
Thisisashorthand fori graph_cattri bute VANV().

Arguments:

261

Graph, vertex and edge attributes

graph: Thegraph.
n: The name of the attribute.

Vec: Pointer to an initialized vector, the result is stored here. It will be resized, if needed.

Returns:

Error code.

| graph_cattri bute_ VAB— Query a boolean vertex attribute.

i graph_bool _t igraph_cattribute_VAB(const igraph_t *graph, const char *nane,
i graph_integer_t vid);

The attribute must exist, otherwise an error is triggered.
Arguments:

graph: Theinput graph.

name: The name of the attribute.
vi d: Theid of the queried vertex.
Returns:

The value of the attribute.

See also:
VAB macro for asimpler interface.

Time complexity: O(Av), the number of vertex attributes.

VAB — Query a boolean vertex attribute.

#defi ne VAB(graph,n,v)
Thisisshorthand fori graph_cattri bute_ VAB().
Arguments:

graph: Thegraph.

n: The name of the attribute.
V: Theid of the vertex.
Returns:

The value of the attribute.

262

Graph, vertex and edge attributes

I graph_cattri bute_VABV— Query a boolean vertex attribute
for many vertices

int igraph_cattribute VABV(const igraph_t *graph, const char *nane,
i graph_vs_ t vids, igraph_vector _bool t *result);
Arguments:
graph: Theinput graph.
name: The name of the attribute.
vi ds: The vertices to query.
result: Pointer to an initialized boolean vector, the result is stored here. It will be resized, if
needed.

Returns:

Error code.

Time complexity: O(v), where v isthe number of verticesin 'vids.

VABV — Query a boolean vertex attribute for all vertices.

#defi ne VABV(graph, n, vec)

Thisisashorthand fori graph_cattri bute_ VABV().
Arguments:

graph: Thegraph.

n: The name of the attribute.

vec: Pointer to aninitialized boolean vector, theresult isstored here. It will beresized, if needed.

Returns:

Error code.

I graph_cattri bute_ VAS— Query a string vertex attribute.

const char* igraph_cattribute VAS(const igraph_t *graph, const char *nane,
i graph_integer_t vid);

The attribute must exist, otherwise an error is triggered.
Arguments:

graph: Theinput graph.

263

Graph, vertex and edge attributes

name: The name of the attribute.
vi d: Theid of the queried vertex.
Returns:

The value of the attribute.

See also:
The macro VAS for asimpler interface.

Time complexity: O(Av), the number of vertex attributes.

VAS — Query a string vertex attribute.

#defi ne VAS(graph, n,v)
Thisisshorthand fori graph_cattri bute_ VAS().
Arguments:

graph: Thegraph.

n: The name of the attribute.
V: Theid of the vertex.
Returns:

The value of the attribute.

I graph_cattri bute VASV— Query a string vertex attribute for
many vertices

int igraph_cattribute_VASV(const igraph_t *graph, const char *nane,
i graph_vs_t vids, igraph_strvector_t *result);
Arguments:
gr aph: The input graph.
name: The name of the attribute.
vi ds: The vertices to query.

resul t: Pointertoaninitialized string vector, theresult isstored here. It will beresized, if needed.

Returns:

Error code.

264

Graph, vertex and edge attributes

Timecomplexity: O(v), wherev isthe number of verticesin 'vids'. (Weassumethat the string attributes
have a bounded length.)

VASV — Query a string vertex attribute for all vertices.

#def i ne VASV(graph, n, vec)

Thisisashorthand fori graph_cat tri bute_ VASV().
Arguments:

graph: Thegraph.

n: The name of the attribute.

vec: Pointer to an initialized string vector, the result is stored here. It will beresized, if needed.

Returns:

Error code.

| graph_cattri bute EAN— Query a numeric edge attribute.

i graph_real t igraph_cattribute EAN(const igraph_t *graph, const char *nane,
i graph_integer_t eid);

The attribute must exist, otherwise an error is triggered.
Arguments:

graph: Theinput graph.

name: The name of the attribute.
ei d: Theid of the queried edge.
Returns:

The value of the attribute.

See also:
EAN for an easier interface.

Time complexity: O(Ae), the number of edge attributes.

EAN— Query a numeric edge attribute.

#def i ne EAN(graph, n, e)

Thisisshorthand fori graph_cattri bute EAN().

265

Graph, vertex and edge attributes

Arguments:

graph: Thegraph.

n: The name of the attribute.
e: Theid of the edge.
Returns:

The value of the attribute.

| graph_cattri bute EANV— Query a numeric edge attribute for
many edges

int igraph_cattribute EANV(const igraph_t *graph, const char *nane,
igraph_es t eids, igraph_vector_t *result);

Arguments:

graph: Theinput graph.

name: The name of the attribute.

ei ds: The edges to query.

resul t: Pointer to aninitialized vector, the result is stored here. It will be resized, if needed.

Returns:
Error code.

Time complexity: O(€), where e is the number of edgesin 'eids.

EANV — Query a numeric edge attribute for all edges.

#defi ne EANV(graph, n, vec)

Thisisashorthand for i graph_cat tri but e EANV() .
Arguments:

graph: Thegraph.

n: The name of the attribute.

vVec: Pointer to an initialized vector, the result is stored here. It will be resized, if needed.

Returns:

Error code.

266

Graph, vertex and edge attributes

I graph_cattri bute EAB— Query a boolean edge attribute.

i graph_bool t igraph_cattribute EAB(const igraph_t *graph, const char *nane,
i graph_integer t eid);

The attribute must exist, otherwise an error is triggered.
Arguments:

graph: Theinput graph.

name: The name of the attribute.
ei d: Theid of the queried edge.
Returns:

The value of the attribute.

See also:
EAB for an easier interface.

Time complexity: O(Ae), the number of edge attributes.

EAB — Query a boolean edge attribute.

#def i ne EAB(graph, n, e)
Thisisshorthand fori gr aph_cattri but e _EAB().
Arguments:

graph: Thegraph.

n: The name of the attribute.
e: Theid of the edge.
Returns:

The value of the attribute.

| graph_cattri bute EABV— Query a boolean edge attribute for
many edges

int igraph_cattribute_ EABV(const igraph_t *graph, const char *nane,
i graph_es_t eids, igraph_vector_bool t *result);

Arguments:

267

Graph, vertex and edge attributes

graph: Theinput graph.

name: The name of the attribute.
ei ds: The edges to query.
resul t: Pointer to an initialized boolean vector, the result is stored here. It will be resized, if
needed.
Returns:
Error code.

Time complexity: O(e), where e isthe number of edgesin 'eids.

EABV — Query a boolean edge attribute for all edges.

#def i ne EABV(graph, n, vec)

Thisisashorthand for i graph_cattri bute EABV().
Arguments:

graph: Thegraph.

n: The name of the attribute.

Vec: Pointer to an initialized vector, the result is stored here. It will be resized, if needed.

Returns:

Error code.

I graph_cattri bute EAS — Query a string edge attribute.

const char* igraph_cattribute EAS(const igraph_t *graph, const char *nane,
i graph_integer_t eid);

The attribute must exist, otherwise an error is triggered.
Arguments:

graph: Theinput graph.

name: The name of the attribute.

ei d: Theid of the queried edge.

Returns;
The value of the attribute.

\se EAS if you want to type less. Time complexity: O(Ae), the number of edge attributes.

268

Graph, vertex and edge attributes

EAS — Query a string edge attribute.

#def i ne EAS(graph, n, e)
Thisisshorthand fori graph_cattri bute_ EAS().
Arguments:

graph: Thegraph.

n: The name of the attribute.
e: Theid of the edge.
Returns:

The value of the attribute.

I graph_cattribute EASV— Query a string edge attribute for
many edges

int igraph_cattribute EASV(const igraph_t *graph, const char *nane,
igraph_es t eids, igraph strvector_t *result);

Arguments:

graph: Theinput graph.

name: The name of the attribute.

vi ds: The edges to query.

resul t: Pointertoaninitialized string vector, theresult isstored here. It will beresized, if needed.

Returns:
Error code.

Time complexity: O(e), where e isthe number of edgesin 'eids. (We assume that the string attributes
have a bounded length.)

EASV — Query a string edge attribute for all edges.

#def i ne EASV(graph, n, vec)
Thisisashorthand for i gr aph_cat tri but e_EASV() .
Arguments:

graph: Thegraph.

269

Graph, vertex and edge attributes

n: The name of the attribute.

vec: Pointer to an initialized string vector, the result is stored here. It will beresized, if needed.

Returns:

Error code.

Set attributes

I graph_cattri bute GAN set — Set a numeric graph attribute

int igraph_cattribute GAN set(igraph_t *graph, const char *nane,
i graph_real _t val ue);

Arguments:

graph: Thegraph.

nane: Name of the graph attribute. If there is no such attribute yet, then it will be added.

val ue: The (new) value of the graph attribute.

Returns:
Error code.

\se SETGAN if you want to type less. Time complexity: O(1).

SETGAN — Set a numeric graph attribute

#def i ne SETGAN(gr aph, n, val ue)

Thisisashorthand fori gr aph_cattri bute_GAN set ().
Arguments:

graph: Thegraph.

n: The name of the attribute.

val ue: Thenew vaue of the attribute.

Returns:

Error code.

I graph_cattribute GAB set — Set a boolean graph attribute

270

Graph, vertex and edge attributes

int igraph_cattribute_ GAB set(igraph_t *graph, const char *nane,
i graph_bool _t val ue);

Arguments:

graph: Thegraph.

nane: Name of the graph attribute. If thereis no such attribute yet, then it will be added.

val ue: The(new) value of the graph attribute.

Returns:
Error code.

\se SETGAN if you want to type less. Time complexity: O(1).

SETGAB — Set a boolean graph attribute

#def i ne SETGAB(gr aph, n, val ue)

Thisisashorthand fori graph_cattri bute_GAB set ().
Arguments:

graph: Thegraph.

n: The name of the attribute.

val ue: Thenew value of the attribute.

Returns:

Error code.

I graph_cattri bute GAS set — Set a string graph attribute.

int igraph_cattribute_GAS set(igraph_t *graph, const char *name,
const char *val ue);

Arguments:

graph: Thegraph.

nane: Name of the graph attribute. If there is no such attribute yet, then it will be added.

val ue: The(new) value of the graph attribute. It will be copied.

Returns:
Error code.

\se SETGAS if you want to type less. Time complexity: O(1).

271

Graph, vertex and edge attributes

SETGAS — Set a string graph attribute

#def i ne SETGAS(gr aph, n, val ue)

Thisisashorthand fori gr aph_cattri bute_GAS set ().
Arguments:

graph: Thegraph.

n: The name of the attribute.

val ue: Thenew value of the attribute.

Returns:

Error code.

| graph_cattri bute VAN set — Set a numeric vertex attribute

int igraph_cattribute VAN set(igraph_t *graph, const char *nane,
i graph_integer t vid, igraph_real t value);

The attribute will be added if not present already. If present it will be overwritten. The sameval ue
isset for all verticesincluded invi d.

Arguments:

graph: Thegraph.

name: Name of the attribute.

vi d: Vertices for which to set the attribute.

val ue: The(new) value of the attribute.

Returns:

Error code.

See also:
SETVANfor asimpler way.

Time complexity: O(n), the number of verticesif the attribute is new, O(|vid|) otherwise.

SETVAN — Set a numeric vertex attribute

#defi ne SETVAN(graph, n, vi d, val ue)

Thisisashorthand fori graph_cattri bute VAN set ().

272

Graph, vertex and edge attributes

Arguments:

graph: Thegraph.

n: The name of the attribute.
vi d: Ids of the verticesto set.

val ue: Thenew value of the attribute.

Returns:

Error code.

| graph_cattri bute VAB set — Set a boolean vertex attribute

int igraph_cattribute VAB set(igraph_t *graph, const char *nane,
i graph_integer _t vid, igraph_bool t value);

The attribute will be added if not present already. If present it will be overwritten. The same val ue
isset for all verticesincluded invi d.

Arguments:

graph: Thegraph.

name: Name of the attribute.

vi d: Vertices for which to set the attribute.

val ue: The (new) value of the attribute.

Returns:

Error code.

See also:
SETVAB for asimpler way.

Time complexity: O(n), the number of verticesif the attribute is new, O(jvid|) otherwise.

SETVAB — Set a boolean vertex attribute

#defi ne SETVAB(graph, n, vid, val ue)
Thisisashorthand fori graph_cattri bute VAB set ().
Arguments:

graph: Thegraph.

n: The name of the attribute.

vi d: Ids of the verticesto set.

273

Graph, vertex and edge attributes

val ue: Thenew value of the attribute.

Returns:

Error code.

| graph_cattri bute VAS set — Set a string vertex attribute

int igraph_cattribute VAS set(igraph_t *graph, const char *nane,
i graph_integer _t vid, const char *val ue);

The attribute will be added if not present already. If present it will be overwritten. The same val ue
isset for all verticesincluded invi d.

Arguments:

graph: Thegraph.

name: Name of the attribute.

vi d: Vertices for which to set the attribute.

val ue: The (new) vaue of the attribute.

Returns:

Error code.

See also:
SETVAS for asimpler way.

Time complexity: O(n*1), nisthe number of vertices, | isthe length of the string to set. If the attribute
if not new then only O(|vid[*I).

SETVAS — Set a string vertex attribute

#def i ne SETVAS(graph, n, vi d, val ue)
Thisisashorthand fori gr aph_cattri bute_VAS set ().
Arguments:

graph: Thegraph.

n: The name of the attribute.

vi d: Ids of the vertices to set.

val ue: Thenew value of the attribute.

Returns:

Error code.

274

Graph, vertex and edge attributes

I graph_cattribute EAN set — Set a numeric edge attribute

int igraph_cattribute_ EAN set(igraph_t *graph, const char *nane,
i graph_integer_t eid, igraph_real _t value);

The attribute will be added if not present already. If present it will be overwritten. The same val ue
isset for all edgesincludedinvi d.

Arguments:

graph: Thegraph.

name: Name of the attribute.

ei d: Edges for which to set the attribute.

val ue: The(new) value of the attribute.

Returns:

Error code.

See also:
SETEANfor asimpler way.

Time complexity: O(€), the number of edgesif the attribute is new, O(Jeid]) otherwise.

SETEAN — Set a numeric edge attribute

#def i ne SETEAN(gr aph, n, ei d, val ue)
Thisisashorthand fori graph_cattri bute EAN set ().
Arguments:

graph: Thegraph.

n: The name of the attribute.

ei d: Ids of the edges to set.

val ue: Thenew value of the attribute.

Returns:

Error code.

i graph_cattri bute_EAB set — Set a boolean edge attribute

int igraph_cattribute EAB set(igraph_t *graph, const char *nane,

275

Graph, vertex and edge attributes

i graph_integer_t eid, igraph_bool _t value);

The attribute will be added if not present already. If present it will be overwritten. The sameval ue
isset for all edgesincludedinvi d.

Arguments:

graph: Thegraph.

name: Name of the attribute.

ei d: Edges for which to set the attribute.

val ue: The(new) value of the attribute.

Returns:

Error code.

See also:
SETEAB for asimpler way.

Time complexity: O(€), the number of edgesif the attribute is new, O(|eid]) otherwise.

SETEAB — Set a boolean edge attribute

#def i ne SETEAB(gr aph, n, ei d, val ue)
Thisisashorthand fori graph_cattri bute EAB set ().
Arguments:

graph: Thegraph.

n: The name of the attribute.

ei d: Ids of the edgesto set.

val ue: Thenew value of the attribute.

Returns:

Error code.

| graph_cattri bute EAS set — Set a string edge attribute

int igraph_cattribute_ EAS set(igraph_t *graph, const char *namne,
i graph_integer_t eid, const char *val ue);

The attribute will be added if not present already. If present it will be overwritten. The sameval ue
isset for all edgesincluded invi d.

Arguments:

276

Graph, vertex and edge attributes

graph: Thegraph.
nane: Name of the attribute.
ei d: Edges for which to set the attribute.

val ue: The (new) value of the attribute.

Returns:

Error code.

See also:
SETEAS for asimpler way.

Time complexity: O(e*1), nisthe number of edges, | is the length of the string to set. If the attribute
if not new then only O(leid[*1).

SETEAS — Set a string edge attribute

#def i ne SETEAS(gr aph, n, ei d, val ue)
Thisisashorthand fori gr aph_cattri bute_EAS set ().
Arguments:

graph: Thegraph.

n: The name of the attribute.

ei d: Ids of the edgesto set.

val ue: Thenew value of the attribute.

Returns:

Error code.

I graph_cattri bute VAN setv — Set a numeric vertex attribute
for all vertices.

int igraph_cattribute VAN setv(igraph_t *graph, const char *nane,
const igraph_vector _t *v);

The attribute will be added if not present yet.
Arguments:

graph: Thegraph.

name: Name of the attribute.

V: The new attribute values. The length of this vector must match the number of vertices.

277

Graph, vertex and edge attributes

Returns:

Error code.

See also:
SETVANV for asimpler way.

Time complexity: O(n), the number of vertices.

SETVANV — Set a numeric vertex attribute for all vertices

#def i ne SETVANV(gr aph, n, v)

Thisisashorthand fori gr aph_cattri bute VAN setv().
Arguments:

graph: Thegraph.

n: The name of the attribute.

V! Vector containing the new values of the attributes.

Returns:

Error code.

I graph_cattri bute VAB setv — Set a boolean vertex attribute
for all vertices.

int igraph_cattribute VAB setv(igraph_t *graph, const char *nane,
const igraph_vector_bool _t *v);

The attribute will be added if not present yet.
Arguments:

graph: Thegraph.

name: Name of the attribute.

V. The new attribute values. The length of this boolean vector must match the number of
vertices.

Returns:

Error code.

See also:

SETVANV for asimpler way.

278

Graph, vertex and edge attributes

Time complexity: O(n), the number of vertices.

SETVABV — Set a boolean vertex attribute for all vertices

#def i ne SETVABV(graph, n, v)

Thisisashorthand fori gr aph_cattri bute VAB setv().
Arguments:

graph: Thegraph.

n: The name of the attribute.

V! Vector containing the new values of the attributes.

Returns:

Error code.

| graph_cattribute VAS setv — Set a string vertex attribute
for all vertices.

int igraph_cattribute_VAS setv(igraph_t *graph, const char *nane,
const igraph_strvector_t *sv);

The attribute will be added if not present yet.

Arguments:

graph: Thegraph.

name: Name of the attribute.

SV: String vector, the new attribute values. The length of this vector must match the number
of vertices.

Returns:

Error code.

See also:
SETVASV for asimpler way.

Time complexity: O(n+l), n isthe number of vertices, | isthetotal length of the strings.

SETVASV — Set a string vertex attribute for all vertices

#def i ne SETVASV(graph, n, v)

279

Graph, vertex and edge attributes

Thisisashorthand for i gr aph_cattri bute VAS setv().
Arguments:

graph: Thegraph.

n: The name of the attribute.

V. Vector containing the new values of the attributes.

Returns:

Error code.

i graph_cattribute EAN setv — Set a numeric edge attribute
for all edges.

int igraph_cattribute EAN setv(igraph_t *graph, const char *nane,
const igraph_vector_t *v);

The attribute will be added if not present yet.
Arguments:

graph: Thegraph.

name: Name of the attribute.

V: The new attribute values. The length of this vector must match the number of edges.

Returns:

Error code.

See also:
SETEANV for asimpler way.

Time complexity: O(€), the number of edges.

SETEANV — Set a numeric edge attribute for all edges

#defi ne SETEANV(graph, n, v)

Thisisashorthand fori graph_cattri bute EAN setv().
Arguments:

graph: Thegraph.

n: The name of the attribute.

V! Vector containing the new values of the attributes.

280

Graph, vertex and edge attributes

I graph_cattribute EAB setv — Set a boolean edge attribute
for all edges.

int igraph_cattribute_EAB setv(igraph_t *graph, const char *nane,
const igraph_vector_bool t *v);

The attribute will be added if not present yet.
Arguments:

graph: Thegraph.

name: Name of the attribute.

V! The new attribute values. The length of this vector must match the number of edges.

Returns:

Error code.

See also:
SETEABYV for asimpler way.

Time complexity: O(€), the number of edges.

SETEABV — Set a boolean edge attribute for all edges

#defi ne SETEABV(graph, n, v)

Thisisashorthand fori graph_cattri bute EAB setv().
Arguments:

graph: Thegraph.

n: The name of the attribute.

V. Vector containing the new values of the attributes.

I graph_cattri bute EAS setv — Set a string edge attribute for
all edges.

int igraph_cattribute EAS setv(igraph_t *graph, const char *nane,
const igraph_strvector_t *sv);

The attribute will be added if not present yet.
Arguments:

graph: Thegraph.

281

Graph, vertex and edge attributes

name: Name of the attribute.

SV: String vector, the new attribute values. The length of this vector must match the number
of edges.

Returns:

Error code.

See also:
SETEASV for asimpler way.

Time complexity: O(etl), eisthe number of edges, | is the total length of the strings.

SETEASV — Set a string edge attribute for all edges

#def i ne SETEASV(gr aph, n, v)

Thisisashorthand for i gr aph_cattri bute EAS setv().
Arguments:

graph: Thegraph.

n: The name of the attribute.

V: Vector containing the new values of the attributes.

Remove attributes

I graph_cattribute renove_g— Remove a graph attribute

void igraph_cattribute_renove g(igraph_t *graph, const char *nane);

Arguments:
graph: Thegraph object.

nane: Name of the graph attribute to remove.

See also:

DELGA for asimpler way.

DELGA — Remove a graph attribute.

#def i ne DELGA(graph, n)

A shorthand fori graph_cattri bute_renove_g().

282

Graph, vertex and edge attributes

Arguments:
graph: Thegraph.

n: The name of the attribute to remove.

I graph_cattribute_renove_ v — Remove a vertex attribute

void igraph_cattribute _renove v(igraph_ t *graph, const char *nane);

Arguments:
graph: The graph object.

nane: Name of the vertex attribute to remove.

See also:

DELVA for asimpler way.

DELVA — Remove a vertex attribute.

#defi ne DELVA(gr aph, n)

A shorthand for i graph_cattri bute_renove_v().
Arguments:

graph: Thegraph.

n: The name of the attribute to remove.

| graph_cattri bute renpove e — Remove an edge attribute

void igraph_cattribute_renove_e(igraph_t *graph, const char *nane);

Arguments:
graph: The graph object.

nane: Name of the edge attribute to remove.

See also:

DELEA for asimpler way.

DELEA — Remove an edge attribute.

283

Graph, vertex and edge attributes

#def i ne DELEA(gr aph, n)

A shorthand fori graph_cattri bute_renove_e().
Arguments:

graph: Thegraph.

n: The name of the attribute to remove.

i graph_cattribute renove_all — Remove all graph/ver-

tex/edge attributes
void igraph_cattribute_renove_all (igraph_t *graph,
i graph_bool t v,

Arguments:

graph: The graph object.

g: Boolean, whether to remove graph attributes.
V! Boolean, whether to remove vertex attributes.
e: Boolean, whether to remove edge attributes.
See also:

DELGAS, DELVAS, DELEAS, DELALL for simpler ways.

DELGAS — Remove all graph attributes.

#def i ne DELGAS(gr aph)
Cdlsi graph_cattribute_remnmove_all ().
Arguments:

graph: Thegraph.

DELVAS — Remove all vertex attributes.

#def i ne DELVAS(gr aph)
Cadllsi graph_cattri bute_renmove_all ().
Arguments:

graph: Thegraph.

i graph_bool _t
i graph_bool _t

284

Graph, vertex and edge attributes

DELEAS — Remove all edge attributes.

#def i ne DELEAS(gr aph)
Cadllsi graph_cattribute remove_all ().
Arguments:

graph: Thegraph.

DELALL — Remove all attributes.

#defi ne DELALL(graph)

All graph, vertex and edges attributes will be removed. Calls i graph_cattribute_re-
nove_all ().

Arguments:

graph: Thegraph.

285

Chapter 13. Structural properties of
graphs

These functions usually calculate some structural property of a graph, like its diameter, the degree
of the nodes, etc.

Basic properties

| graph_ar e_connect ed — Decides whether two ver-
tices are connected

int igraph_are_connected(const igraph_t *graph,
i graph_integer t vl1, igraph_integer_t v2,
i graph_bool t *res);

Arguments:

graph: The graph object.

vi: Thefirst vertex.

v2: The second vertex.

res: Boolean, TRUE if thereisan edgefromv 1 tov2, FALSE otherwise.
Returns:

The error code | GRAPH_EI NVVI Disreturned if an invalid vertex ID is given.
The function is of course symmetric for undirected graphs.

Time complexity: O(min(log(dl), log(d2))), d1 is the (out-)degree of v1 and d2 is the (in-)degree
of v2.

(Shortest)-path related functions

| graph_shortest pat hs — The length of the short-
est paths between vertices.

int igraph_shortest paths(const igraph_t *graph, igraph_matrix_t *res,
const igraph_vs_ t from const igraph_vs t to,
i graph_nei node_t node);

Arguments:

graph: The graph object.

286

Structural properties of graphs

res: Theresult of thecalculation, amatrix. A pointer to aninitialized matrix, to be more precise.
The matrix will be resized if needed. It will have the same number of rows as the length
of the f r omargument, and its number of columns is the number of verticesin thet o
argument. One row of the matrix shows the distances from/to agiven vertex to the onesin
t 0. For the unreachable vertices IGRAPH_INFINITY isreturned.

from The source vertices.

t o: The target vertices. It is not allowed to include a vertex twice or more.

node: Thetype of shortest pathsto be used for the cal culation in directed graphs. Possible values:
I GRAPH_QUT thelengths of the outgoing paths are calcul ated.
| GRAPH_I N thelengths of the incoming paths are cal culated.

| GRAPH_ALL thedirected graphisconsidered asan undirected onefor the computation.

Returns:
Error code:
| GRAPH_ENOVEM not enough memory for temporary data.
| GRAPH EI NWWI D invalid vertex id passed.
| GRAPH_EI NVMODE invalid mode argument.

Time complexity: O(n(|V[+[E])), n is the number of vertices to calculate, |V| and |E| are the number
of vertices and edges in the graph.

See also:

i graph_get _shortest _paths() to get the paths themselves, igraph_short-
est_paths_dij kstra() fortheweighted version.

i graph_shortest paths dijkstra—Weighted
shortest path lengths between vertices.

int igraph_shortest paths dijkstra(const igraph_t *graph,
igraph_matrix_t *res,
const igraph_vs_t from
const igraph_vs t to,
const igraph_vector_t *weights,
i graph_nei node_t node);

Thisfunction implements Dijkstra's a gorithm to find the weighted shortest path lengthsto all vertices
from a single source. It is run independently for the given sources. It uses a binary heap for efficient
implementation.

Arguments:
graph: Theinput graph, can be directed.

res: Theresult, amatrix. A pointer to an initialized matrix should be passed here. The matrix
will be resized as needed. Each row contains the distances from a single source, to the

287

Structural properties of graphs

vertices given in the t o argument. Unreachable vertices has distance | GRAPH | N-

FINITY.
from The source vertices.
t o: The target vertices. It is not allowed to include a vertex twice or more.

wei ght s: The edge weights. All edge weights must be non-negative for Dijkstra's algorithm to
work. Additionally, no edge weight may be NaN. If either case does not hold, an error
is returned. If thisis a null pointer, then the unweighted version, i gr aph_short -
est _pat hs() iscaled.

node: For directed graphs; whether to follow paths along edge directions (I GRAPH_QUT), or
the opposite (I GRAPH I N), or ignore edge directions completely (I GRAPH_ALL). It
isignored for undirected graphs.

Returns:

Error code.

Time complexity: O(s* |E|log|E|+|V|), where |V | isthe number of vertices, |E| the number of edgesand
s the number of sources.

See also:

i graph_shortest paths() fora(dightly) faster unweighted versionori gr aph_short -
est _paths_bel Il man_ford() for aweighted variant that works in the presence of negative
edge weights (but no negative loops).

Example 13.1. Fileexanpl es/ si npl e/ dijkstra.c

| graph_shortest pat hs_bel | man_ford — Weight-
ed shortest path lengths between vertices, allowing
negative weights.

i nt igraph_shortest paths_bell man_ford(const igraph_t *graph,
igraph_matrix_t *res,
const igraph_vs_t from
const igraph_vs_ t to,
const igraph_vector_t *weights,
i graph_nei node_t node);

Thisfunctionimplementsthe Bellman-Ford algorithm to find the weighted shortest pathsto all vertices
from asingle source, allowing negative weights. It is run independently for the given sources. If there
are no negative weights, you are better off withi gr aph_shortest _pat hs_dij kstra() .

Arguments:
graph: Theinput graph, can be directed.

res: Theresult, amatrix. A pointer to an initialized matrix should be passed here, the matrix
will be resized if needed. Each row contains the distances from a single source, to al
vertices in the graph, in the order of vertex ids. For unreachable vertices the matrix
contains | GRAPH | NFI NI TY.

from The source vertices.

288

Structural properties of graphs

t o: The target vertices. It is not allowed to include a vertex twice or more.

wei ghts: The edge weights. There mustn't be any closed loop in the graph that has a negative
total weight (since this would allow us to decrease the weight of any path containing
at least a single vertex of this loop infinitely). Additionally, no edge weight may be
NaN. If either case does not hold, an error is returned. If thisisanull pointer, then the
unweighted version, i gr aph_short est pat hs() iscalled.

node: For directed graphs; whether to follow paths along edge directions (I GRAPH_QUT), or
the opposite (I GRAPH_I N), or ignore edge directions completely (I GRAPH_ALL). It
isignored for undirected graphs.

Returns:

Error code.

Time complexity: O(s* |E[* |V|), where |V| is the number of vertices, |E| the number of edges and sthe
number of sources.

See also:

i graph_shortest paths() for a faster unweighted version or igraph_short-
est _pat hs_di j kstra() if youdo not have negative edge weights.

Example 13.2. Fileexanpl es/ si npl e/ bel |l man_ford. c

| graph_shortest pat hs_j ohnson — Weighted
shortest path lengths between vertices, using John-
son's algorithm.

i nt igraph_shortest paths_johnson(const igraph_t *graph,
i graph_matrix_t *res,
const igraph_vs_t from
const igraph_vs t to,
const igraph_vector_t *weights);

See Wikipedia at http://en.wikipedia.org/wiki/Johnson's_algorithm for Johnson's agorithm. This al-
gorithm works even if the graph contains negative edge weights, and itisworth using it if we calculate
the shortest paths from many sources.

If no edge weights are supplied, then the unweighted version, i gr aph_short est pat hs() is
called.

If al the supplied edge weights are non-negative, then Dijkstra's algorithm is used by calling
i graph_shortest paths_dijkstra().

Arguments:
graph: Theinput graph. If negative weights are present, it should be directed.
res: Pointer to an initialized matrix, the result will be stored here, one line for each source

vertex, one column for each target vertex.
from The source vertices.

t o: The target vertices. It is not allowed to include a vertex twice or more.

289

http://en.wikipedia.org/wiki/Johnson's_algorithm

Structural properties of graphs

wei ght's: Optional edge weights. If it is a null-pointer, then the unweighted breadth-first search
basedi gr aph_short est pat hs() will becalled.

Returns:
Error code.

Timecomplexity: O(s|V [log|V|+|V||E]), [V| and |E| are the number of verticesand edges, sisthe number
of source vertices.

See also:

i graph_shortest paths() for a faster unweighted version or igraph_short-
est _paths_dijkstra() if you do not have negative edge weights, i gr aph_short -
est _paths_bel I man_f ord() if you only need to calculate shortest paths from a couple of
Sources.

| graph_get shortest pat hs — Shortest paths from
a vertex.

int igraph_get shortest paths(const igraph_t *graph,
i graph_vector_ptr_t *vertices,
i graph_vector _ptr_t *edges,
i graph_integer_t from const igraph_vs_t to,
i graph_nei node_t node,
i graph_vector _long_t *predecessors,
i graph_vector _long_t *inbound_edges);

If there is more than one geodesic between two vertices, this function gives only one of them.

Arguments:

graph: The graph object.

vertices: Theresult, theids of the vertices along the paths. Thisisapointer vector, each
element points to a vector object. These should be initialized before passing
them to the function, which will properly clear and/or resize them and fill the
idsof the vertices along the geodesics from/to the vertices. Supply anull point-
er hereif you don't need these vectors.

edges: The result, the ids of the edges along the paths. This is a pointer vector, each
element points to a vector object. These should be initialized before passing
them to the function, which will properly clear and/or resize them and fill the
ids of the vertices a ong the geodesicsfrom/to the vertices. Supply anull point-
er here if you don't need these vectors.

from Theid of the vertex from/to which the geodesics are calculated.

t o: Vertex sequence with the ids of the vertices to/from which the shortest paths
will be calculated. A vertex might be given multiple times.

node: The type of shortest paths to be used for the calculation in directed graphs.

Possible values:

| GRAPH_QUT the outgoing paths are cal culated.

290

Structural properties of graphs

| GRAPH | N theincoming paths are calculated.

| GRAPH_ALL thedirected graph is considered as an undirected one for the
computation.

predecessors: A pointer to an initialized igraph vector or null. If not null, avector containing
the predecessor of each vertex in the single source shortest path treeisreturned
here. The predecessor of vertex i in the tree is the vertex from which vertex
i was reached. The predecessor of the start vertex (in the f r omargument) is
itself by definition. If the predecessor is-1, it means that the given vertex was
not reached from the source during the search. Note that the search terminates
if al theverticesint o are reached.

i nbound_edges: A pointer to an initialized igraph vector or null. If not null, a vector contain-
ing the inbound edge of each vertex in the single source shortest path tree is
returned here. The inbound edge of vertex i in the tree is the edge via which
vertex i wasreached. The start vertex and verticesthat were not reached during
the search will have -1 in the corresponding entry of the vector. Note that the
search terminatesif al the verticesint o are reached.

Returns:
Error code:

| GRAPH_ENOQVEM not enough memory for temporary data.

| GRAPH EI NWWI D fromisinvalid vertex id, or thelength of t o is not the same as the length
of res.

| GRAPH_EI NVMODE invalid mode argument.
Time complexity: O(|V|+|E]), [V| is the number of vertices, |E| the number of edgesin the graph.
See also:

i graph_shortest paths() if youonly need the path length but not the paths themselves.

Example 13.3. File exanpl es/ si npl e/
i graph_get _shortest_paths.c

| graph_get shortest pat h— Shortest path from
one vertex to another one.

int igraph_get_shortest_path(const igraph_t *graph,
i graph_vector_t *verti ces,
i graph_vector_t *edges,
i graph_integer_t from
i graph_integer_t to,
i graph_nei node_t node);

Calculates and returns a single unweighted shortest path from a given vertex to another one. If there
are more than one shortest paths between the two vertices, then an arbitrary oneis returned.

Thisfunctionisawrapper toi gr aph_get _short est _pat hs(), for the special case when only
onetarget vertex is considered.

291

Structural properties of graphs

Arguments:

graph: The input graph, it can be directed or undirected. Directed paths are considered in
directed graphs.

vertices: Pointer to aninitiaized vector or anull pointer. If not a null pointer, then the vertex
ids along the path are stored here, including the source and target vertices.

edges: Pointer to an uninitialized vector or anull pointer. If not anull pointer, then the edge
ids along the path are stored here.

from Theid of the source vertex.
t o: Theid of the target vertex.
node: A constant specifying how edge directions are considered in directed graphs. Valid

modes are: | GRAPH_QUT, follows edge directions; | GRAPH_| N, follows the oppo-
sitedirections; and | GRAPH_ALL, ignores edge directions. Thisargument isignored
for undirected graphs.

Returns:

Error code.
Time complexity: O(|V|+|E]), linear in the number of vertices and edges in the graph.
See also:

i graph_get shortest pat hs() for the version with more target vertices.

| graph_get shortest paths _dijkstra— Weight-
ed shortest paths from a vertex.

int igraph_get_shortest_paths_dijkstra(const igraph_t *graph
i graph_vector_ptr_t *vertices,
i graph_vector_ptr_t *edges,
i graph_integer_t from
i graph_vs_t to,
const igraph_vector_t *weights,
i graph_nei node_t node,
i graph_vector_long_t *predecessors,
i graph_vector_long_t *inbound_edges);

If there is more than one path with the smallest weight between two vertices, this function gives only

one of them.

Arguments:

gr aph: The graph object.

vertices: Theresult, theids of the vertices along the paths. Thisisapointer vector, each

element points to a vector object. These should be initialized before passing
them to the function, which will properly clear and/or resize them and fill the
ids of the vertices along the geodesi cs from/to the vertices. Supply anull point-
er here if you don't need these vectors. Normally, either this argument, or the

292

Structural properties of graphs

edges:

from

to:

wei ght s:

node:

predecessors:

i nbound_edges:

Returns:
Error code:

| GRAPH_ENOVEM

edges should be non-null, but no error or warning is given if they are both
null pointers.

The result, the ids of the edges aong the paths. Thisis a pointer vector, each
element points to a vector object. These should be initialized before passing
them to the function, which will properly clear and/or resize them and fill the
ids of the vertices along the geodesi cs from/to the vertices. Supply anull point-
er here if you don't need these vectors. Normally, either this argument, or the
verti ces should be non-null, but no error or warning is given if they are
both null pointers.

Theid of the vertex from/to which the geodesics are calcul ated.

Vertex sequence with the ids of the vertices to/from which the shortest paths
will be calculated. A vertex might be given multiple times. *

The edge weights. All edge weights must be non-negative for Dijkstra's algo-
rithm to work. Additionally, no edge weight may be NaN. If either case does
not hold, an error isreturned. If thisisanull pointer, then the unweighted ver-
sion,i graph_get _shortest_pat hs() iscaled.

The type of shortest paths to be use for the calculation in directed graphs.
Possible values:

| GRAPH_QUT the outgoing paths are cal cul ated.
| GRAPH I N theincoming paths are calculated.

| GRAPH_ALL thedirected graph is considered as an undirected one for the
computation.

A pointer to aninitialized igraph vector or null. If not null, avector containing
the predecessor of each vertex in the single source shortest path treeisreturned
here. The predecessor of vertex i in the tree is the vertex from which vertex
i was reached. The predecessor of the start vertex (in the f r omargument) is
itself by definition. If the predecessor is-1, it means that the given vertex was
not reached from the source during the search. Note that the search terminates
if al theverticesint o are reached.

A pointer to an initialized igraph vector or null. If not null, a vector contain-
ing the inbound edge of each vertex in the single source shortest path tree is
returned here. The inbound edge of vertex i in the tree is the edge via which
vertex i wasreached. The start vertex and verticesthat were not reached during
the search will have -1 in the corresponding entry of the vector. Note that the
search terminatesif all the verticesint o are reached.

not enough memory for temporary data.

| GRAPH EI NWWI D fromisinvalid vertex id, or thelength of t o is not the same asthe length

of res.

I GRAPH_EI NVMODE invalid mode argument.

Time complexity: O(|E[log|E[+|V]), where [V] is the number of vertices and |E]| is the number of edges

See also:

293

Structural properties of graphs

i graph_shortest paths_dijkstra() if youonly need the path length but not the paths
themselves, i gr aph_get _short est pat hs() if al edge weights are equal.

Example 134. File exanpl es/ si npl e/
i graph_get _shortest _paths_dijkstra.c

| graph_get shortest path _dijkstra— Weighted
shortest path from one vertex to another one.

int igraph_get _shortest path_dijkstra(const igraph_t *graph,
i graph_vector_t *vertices,
i graph_vector_t *edges,
i graph_integer_t from
i graph_integer_t to,
const igraph_vector_t *weights,
i graph_nei node_t node);

Calculatesasingle (positively) weighted shortest path from asingle vertex to another one, using Dijk-
stra's algorithm.

This function is a special case (and a wrapper) to i graph_get _shortest pat hs_dij k-
stra().

Arguments:
graph: Theinput graph, it can be directed or undirected.

vertices: Pointer to aninitialized vector or a null pointer. If not a null pointer, then the vertex
ids along the path are stored here, including the source and target vertices.

edges: Pointer to an uninitialized vector or anull pointer. If not anull pointer, then the edge
ids along the path are stored here.

from Theid of the source vertex.
to: Theid of the target vertex.

wei ght s: The edge weights. All edge weights must be non-negative for Dijkstrals ago-
rithm to work. Additionally, no edge weight may be NaN. If either case does not
hold, an error is returned. If this is a null pointer, then the unweighted version,
i graph_get shortest pat hs() iscaled.

node: A constant specifying how edge directions are considered in directed graphs.
| GRAPH_QUT followsedgedirections, | GRAPH | Nfollowsthe oppositedirections,
and | GRAPH_ALL ignores edge directions. This argument isignored for undirected

graphs.
Returns:
Error code.
Time complexity: O(|E|log|E[+|V]), [V |isthe number of vertices, |E|isthe number of edgesinthegraph.
See also:

i graph_get shortest paths_dij kstra() for theversion with more target vertices.

294

Structural properties of graphs

| graph_get _shortest paths bell man_ford —
Weighted shortest paths from a vertex, allowing nega-
tive weights.

int igraph_get _shortest_paths_bel |l man_ford(const igraph_t *graph,
i graph_vector_ptr_t *vertices,
i graph_vector_ptr_t *edges,
i graph_integer_t from
i graph_vs_t to,
const igraph_vector_t *weights,
i graph_nei node_t node,
i graph_vector_long_t *predecessors,
i graph_vector _long_t *inbound_edges);

This function calculates weighted shortest paths from or to a single vertex, and allows negative
weights. When there is more than one shortest path between two vertices, only one of themisreturned.
If there are no negative weights, you are better off withi gr aph_get shortest paths_di j k-
stra() .

Arguments:
graph: Theinput graph, can be directed.

vertices: Theresult, theids of the vertices along the paths. Thisisapointer vector, each
element points to a vector object. These should be initialized before passing
them to the function, which will properly clear and/or resize them and fill the
ids of the vertices a ong the geodesicsfrom/to the vertices. Supply anull point-
er here if you don't need these vectors. Normally, either this argument, or the
edges should be non-null, but no error or warning is given if they are both
null pointers.

edges: The result, the ids of the edges aong the paths. Thisis a pointer vector, each
element points to a vector object. These should be initialized before passing
them to the function, which will properly clear and/or resize them and fill the
ids of the vertices along the geodesi csfrom/to the vertices. Supply anull point-
er here if you don't need these vectors. Normally, either this argument, or the
verti ces should be non-null, but no error or warning is given if they are
both null pointers.

from Theid of the vertex from/to which the geodesics are calcul ated.

to: Vertex sequence with the ids of the vertices to/from which the shortest paths
will be calculated. A vertex might be given multiple times.

wei ght s: The edgeweights. There mustn't be any closed loop in the graph that hasaneg-
ativetotal weight (since thiswould allow usto decrease the weight of any path
containing at least asingle vertex of thisloop infinitely). If thisisanull point-
er, then the unweighted version, i gr aph_short est _pat hs() iscalled.

node: For directed graphs, whether to follow paths along edge directions
(I GRAPH_QUT), or the opposite (I GRAPH_I N), or ignore edge directions
completely (I GRAPH_ALL). Itisignored for undirected graphs.

predecessors: A pointer to aninitialized igraph vector or null. If not null, avector containing
the predecessor of each vertex in the single source shortest path treeisreturned

295

Structural properties of graphs

here. The predecessor of vertex i in the tree is the vertex from which vertex
i was reached. The predecessor of the start vertex (in the f r omargument) is
itself by definition. If the predecessor is-1, it means that the given vertex was
not reached from the source during the search. Note that the search terminates
if al theverticesint o arereached.

i nbound_edges: A pointer to an initialized igraph vector or null. If not null, a vector contain-
ing the inbound edge of each vertex in the single source shortest path tree is
returned here. The inbound edge of vertex i in the tree is the edge via which
vertex i wasreached. The start vertex and verticesthat were not reached during
the search will have -1 in the corresponding entry of the vector. Note that the
search terminatesif al the verticesint o are reached.

Returns:
Error code:
| GRAPH_ENOVEM Not enough memory for temporary data.

| GRAPH_EI NVAL The weight vector doesn't math the number of edges.

| GRAPH EI NWI D fromisinvalid vertex id, or thelength of t o is not the same asthe length
of verti ces oredges.

| GRAPH_ENEG.OCOP Bellman-ford algorithm encounted a negative loop.
Time complexity: O(|E[*|V]), where [V | is the number of vertices, |E| the number of edges.
See also:

i graph_shortest paths() for a faster unweighted version or igraph_short-
est _paths_dij kstra() if you do not have negative edge weights.

| graph_get _shortest path _bellman_ford —
Weighted shortest path from one vertex to another
one.

int igraph_get_shortest_path_bell man_ford(const igraph_t *graph,
i graph_vector_t *verti ces,
i graph_vector_t *edges,
i graph_integer_t from
i graph_integer_t to,
const igraph_vector_t *weights,
i graph_nei node_t node);

Calculatesasingle (positively) weighted shortest path from a single vertex to another one, using Bell-
man-Ford algorithm.

This function is a special case (and a wrapper) to i gr aph_get _shortest _pat hs_bel | -
man_ford().

Arguments:

graph: Theinput graph, it can be directed or undirected.

296

Structural properties of graphs

vertices: Pointer to aninitialized vector or anull pointer. If not anull pointer, then the vertex
ids along the path are stored here, including the source and target vertices.

edges: Pointer to an uninitialized vector or anull pointer. If not anull pointer, then the edge
ids along the path are stored here.

from Theid of the source vertex.
t o: Theid of the target vertex.

wei ght s: The edge weights. There mustn't be any closed loop in the graph that has a negative
total weight (sincethiswould allow usto decrease the weight of any path containing at
|least asingle vertex of thisloop infinitely). If thisisanull pointer, then the unweighted
version is called.

node: A constant specifying how edge directions are considered in directed graphs.
| GRAPH_QUT follows edgedirections, | GRAPH_|I Nfollowsthe opposite directions,
and | GRAPH_ALL ignores edge directions. This argument isignored for undirected

graphs.
Returns:
Error code.
Time complexity: O(|E|log|E[+|V]), [V |isthe number of vertices, |E|isthe number of edgesinthegraph.
See also:

i graph_get shortest paths_bel | man_ford() for the version with more target ver-
tices.

| graph_get _all shortest paths — All shortest
paths (geodesics) from a vertex.

int igraph_get _all _shortest paths(const igraph_t *graph,
i graph_vector _ptr_t *res,
i graph_vector_t *nrgeo,
i graph_integer_t from const igraph_vs_t to,
i graph_nei node_t node);

When there is more than one shortest path between two vertices, al of them will be returned.
Arguments:
graph: The graph object.

res: Pointer to an initialized pointer vector, the result will be stored hereini gr aph_vec-
t or _t objects. Each vector object contains the vertices along a shortest path from f r om
to another vertex. The vectors are ordered according to their target vertex: first the shortest
paths to vertex O, then to vertex 1, etc. No dataisincluded for unreachable vertices.

nrgeo: Pointer to aninitialized i gr aph_vect or _t object or NULL. If not NULL the number
of shortest paths from f r omare stored here for every vertex in the graph. Note that the
values will be accurate only for those vertices that are in the target vertex sequence (see
t 0), since the search terminates as soon as all the target vertices have been found.

from Theid of the vertex from/to which the geodesics are calcul ated.

297

Structural properties of graphs

t o: Vertex sequence with the ids of the vertices to/from which the shortest paths will be cal-
culated. A vertex might be given multiple times.

node: The type of shortest paths to be use for the calculation in directed graphs. Possible values:
I GRAPH_QUT thelengths of the outgoing paths are calcul ated.
| GRAPH_I N thelengths of the incoming paths are cal cul ated.

| GRAPH_ALL thedirected graphisconsidered asan undirected onefor the computation.

Returns:
Error code:
| GRAPH_ENOVEM not enough memory for temporary data.
| GRAPH EI NWI D fromisinvalid vertex id.
| GRAPH_EI NVMODE invalid mode argument.
Added in version 0.2.

Time complexity: O(|V|+|E|) for most graphs, O(|V|*2) in the worst case.

i graph_get _all _shortest paths dijkstra—All
weighted shortest paths (geodesics) from a vertex.

int igraph_get _all _shortest _paths_dijkstra(const igraph_t *graph,
i graph_vector_ptr_t *res,
i graph_vector_t *nrgeo,
i graph_integer_t from igraph_vs_t to,
const igraph_vector_t *weights,
i graph_nei node_t node);

Arguments:
gr aph: The graph object.
res: Pointer to an initialized pointer vector, the result will be stored hereinigraph_vector_t

objects. Each vector object contains the vertices along a shortest path from f r omto
another vertex. Thevectorsare ordered according to their target vertex: first the shortest
paths to vertex O, then to vertex 1, etc. No dataisincluded for unreachable vertices.

nrgeo: Pointer to an initialized igraph_vector_t object or NULL. If not NULL the number of
shortest paths from f r omare stored here for every vertex in the graph. Note that the
valueswill be accurate only for those verticesthat are in the target vertex sequence (see
t 0), since the search terminates as soon as all the target vertices have been found.

from Theid of the vertex from/to which the geodesics are calcul ated.

t o: Vertex sequence with the ids of the vertices to/from which the shortest paths will be
calculated. A vertex might be given multiple times.

wei ghts: The edge weights. All edge weights must be non-negative for Dijkstra's algorithm to
work. Additionally, no edge weight may be NaN. If either case does not hold, an error

298

Structural properties of graphs

isreturned. If thisisanull pointer, then the unweighted version, i gr aph_get _al -
| _shortest paths() iscalled.

node: The type of shortest paths to be use for the calculation in directed graphs. Possible
values:

| GRAPH_QUT the outgoing paths are calculated.
| GRAPH | N theincoming paths are calculated.
| GRAPH_ALL the directed graph is considered as an undirected one for the compu-
tation.
Returns:
Error code:
| GRAPH_ENOVEM not enough memory for temporary data.

| GRAPH EI NWI D fromisinvalid vertex id, or thelength of t o is not the same asthe length
of res.

| GRAPH_EI NVMODE invalid mode argument.
Time complexity: O(|E[log|E|+|V]), where [V is the number of vertices and |E]| is the number of edges
See also:

i graph_shortest paths_dijkstra() if youonly need the path length but not the paths
themselves, i gr aph_get _al | _shortest pat hs() if al edge weights are equal.

Example 135. File exanpl es/ si npl e/
i graph_get _all _shortest paths _dijkstra.c

| graph_get _all _sinple_paths —Listall simple
paths from one source.

int igraph_get _all _sinple_paths(const igraph_t *graph,
i graph_vector_int_t *res,
i graph_integer t from
const igraph_vs_ t to,
i graph_i nteger _t cutoff,
i graph_nei node_t node);

A path issimpleif its vertices are unique, i.e. no vertex is visited more than once.

Note that potentially there are exponentially many paths between two vertices of agraph, and you may
run out of memory when using this function, if your graph is lattice-like.

This function currently ignored multiple and loop edges.
Arguments:
gr aph: Theinput graph.

res: Initialized integer vector, al paths are returned here, separated by -1 markers. The paths
areincluded in arbitrary order, asthey are found.

299

Structural properties of graphs

from The start vertex.
t o: The target vertices.

cut of f: Maximum length of path that is considered. If negative, paths of al lengths are consid-

ered.
node: The type of the pathsto consider, it isignored for undirected graphs.
Returns:
Error code.

Time complexity: O(n!) in the worst case, n is the number of vertices.

| graph_aver age_pat h_| engt h — Calculates the av-
erage unweighted shortest path length between all
vertex pairs.

i nt igraph_average_path_l ength(const igraph_t *graph,
i graph_real t *res, igraph_real t *unconn_pairs,
i graph_bool t directed, igraph_bool t unconn);

If no vertex pairs can be included in the calculation, for example because the graph has fewer than
two vertices, or if the graph has no edges and unconn is set to TRUE, NaN is returned.

Arguments:
gr aph: The graph object.
res: Pointer to area number, thiswill contain the result.

unconn_pai rs: Pointer toarea number. If not anull pointer, the number of ordered vertex pairs
where the second vertex is unreachable from the first one will be stored here.

di rect ed: Boolean, whether to consider directed paths. Ignored for undirected graphs.

unconn: What to do if the graph is not connected. If TRUE, only those vertex pairs
will be included in the calculation between which there is a path. If FALSE,
| GRAPH | NFI NI TY isreturned for disconnected graphs.
Returns:
Error code: | GRAPH_ENQOVEM not enough memory for data structures
Time complexity: O(|V| |E|), the number of vertices times the number of edges.

See also:

i graph_average path_| ength dijkstra() for theweighted version.

Example 13.6. File exanpl es/ si npl e/
i graph_average path _length.c

300

Structural properties of graphs

| graph_average path | ength _dijkstra— Cal-
culates the average weighted shortest path length be-
tween all vertex pairs.

int igraph_average path_length_dijkstra(const igraph_t *graph,
i graph_real _t *res, igraph_real _t *uncol
const igraph_vector_t *weights,
i graph_bool t directed, igraph_bool t u

If no vertex pairs can be included in the calculation, for example because the graph has fewer than
two vertices, or if the graph has no edges and unconn is set to TRUE, NaN is returned.

All distinct ordered vertex pairs are taken into account.

Arguments:
gr aph: The graph object.
res: Pointer to area number, thiswill contain the result.

unconn_pairs: Pointer toarea number. If not anull pointer, the number of ordered vertex pairs
where the second vertex is unreachable from the first one will be stored here.

wei ght s: The edge weights. All edge weights must be non-negative for Dijkstra's algo-
rithm to work. Additionally, no edge weight may be NaN. If either case does not
hold, an error is returned. If thisisanull pointer, then the unweighted version,
i graph_average_pat h_| engt h() iscaled.

di rect ed: Boolean, whether to consider directed paths. Ignored for undirected graphs.
unconn: If TRUE, only those pairsare considered for the cal cul ation between which there
isapath. If FALSE, | GRAPH_| NFI NI TY isreturned for disconnected graphs.
Returns:
Error code:
| GRAPH_ENQOVEM not enough memory for data structures
| GRAPH_EI NVAL invalid weight vector

Time complexity: O(|V| |E| log|E| + [V]), where |V| is the number of vertices and |E| is the number
of edges.

See also:

i graph_average_pat h_| engt h() for adightly faster unweighted version.

Example 13.7. Fileexanpl es/ si npl e/ i graph_grg_gane. c

| graph_pat h_| engt h_hi st — Create a histogram of
all shortest path lengths.

301

Structural properties of graphs

int igraph_path_length_hist(const igraph_t *graph, igraph_vector_t *res,
i graph_real _t *unconnected, igraph_bool _t directed).

This function calcul ates a histogram, by cal culating the shortest path length between each pair of ver-
tices. For directed graphs both directions might be considered and then every pair of vertices appears
twice in the histogram.

Arguments:

gr aph: The input graph.

res: Pointer to an initialized vector, the result is stored here. The first (i.e. zeroth)
element containsthe number of shortest paths of length 1, etc. The supplied vector
isresized as needed.

unconnect ed: Pointer to areal number, the number of pairs for which the second vertex is not
reachable from thefirst is stored here.

di r ect ed: Whether to consider directed pathsin adirected graph (if not zero). Thisargument
isignored for undirected graphs.
Returns:
Error code.
Time complexity: O(|V||E|), the number of vertices times the number of edges.
See also:

i graph_average path_| ength() andi graph_shortest pat hs()

| graph_di anet er — Calculates the diameter of a
graph (longest geodesic).

int igraph_dianmeter(const igraph_t *graph, igraph_real _t *pres,
i graph_integer_t *pfrom igraph_integer_t *pto,
i graph_vector_t *path,
i graph_bool _t directed, igraph_bool _t unconn);

The diameter of agraph isthe length of the longest shortest path it has. This function computes both
the diameter, aswell asthe corresponding path. The diameter of the null graph is considered beinfinity
by convention. If the graph has no vertices, | GRAPH_NANis returned.

Arguments:

gr aph: The graph object.

pres: Pointer to a real number, if not NULL then it will contain the diameter (the actual
distance).

pfrom Pointer to an integer, if not NULL it will be set to the source vertex of the diameter
path. If the graph has no diameter path, it will be set to -1.

pt o: Pointer to an integer, if not NULL it will be set to the target vertex of the diameter

path. If the graph has no diameter path, it will be set to -1.

302

Structural properties of graphs

pat h: Pointer to an initialized vector. If not NULL the actual longest geodesic path will be
stored here. The vector will be resized as needed.

di rected: Boolean, whether to consider directed paths. Ignored for undirected graphs.
unconn: What to do if the graph is not connected. If TRUE the longest geodesic within a com-
ponent will be returned, otherwise | GRAPH_| NFI NI TY is returned.

Returns:

Error code: | GRAPH_ENQVEM not enough memory for temporary data.
Time complexity: O(|V||E|), the number of vertices times the number of edges.
See also:

i graph_di aneter _dijkstra()

Example 13.8. Fileexanpl es/ si npl e/ i graph_di aneter. c

| graph_di aneter _dijkstra— Calculates the
weighted diameter of a graph using Dijkstra's algo-
rithm.

int igraph_dianeter _dijkstra(const igraph_t *graph
const igraph_vector_t *weights,
i graph_real t *pres,
i graph_integer_t *pfrom
i graph_integer t *pto,
i graph_vector _t *path,
i graph_bool t directed,
i graph_bool _t unconn);

This function computes the weighted diameter of agraph. If the graph has no vertices, | GRAPH_NAN

is returned.

Arguments:

gr aph: The input graph, can be directed or undirected.

pres: Pointer to a real number, if not NULL then it will contain the diameter (the actual
distance).

pfrom Pointer to an integer, if not NULL it will be set to the source vertex of the diameter
path. If the graph has no diameter path, it will be set to -1.

pt o: Pointer to an integer, if not NULL it will be set to the target vertex of the diameter
path. If the graph has no diameter path, it will be set to -1.

pat h: Pointer to an initialized vector. If not NULL the actual longest geodesic path will be

stored here. The vector will be resized as needed.
di rected: Boolean, whether to consider directed paths. Ignored for undirected graphs.

unconn: What to do if the graph is not connected. If TRUE the longest geodesic within acom-
ponent will be returned, otherwise | GRAPH_| NFI NI TY isreturned.

303

Structural properties of graphs

Returns:

Error code.
Time complexity: O(|V||E[*log|E|), |V| is the number of vertices, |E| isthe number of edges.
See also:

i graph_di aneter ()

| graph_gi rt h—The girth of a graph is the length of
the shortest cycle in it.

int igraph_girth(const igraph_t *graph, igraph_integer_t *girth,
i graph_vector _t *circle);

The current implementation worksfor undirected graphs only, directed graphs aretreated asundirected
graphs. Self-loops and multiple edges are ignored.

For graphs that contain no cycles, and only for such graphs, zero is returned. Note that in some appli-
cations, it is customary to define the girth of acyclic graphs to be infinity. However, infinity is not
representable asani gr aph_i nt eger _t, therefore zero is used for this case.

Thisimplementation is based on Alon Itai and Michael Rodeh: Finding aminimum circuit in agraph
Proceedings of the ninth annual ACM symposium on Theory of computing , 1-10, 1977. The first
implementation of this function was done by Keith Briggs, thanks Keith.

Arguments:
graph: Theinput graph.
girth: Pointer to an integer, if not NULL then the result will be stored here.
circle: Pointer to aninitialized vector, the vertex ids in the shortest circle will be stored here.
If NULL then it isignored.
Returns:
Error code.

Time complexity: O((|V|+|E)"2), |V |isthe number of vertices, |E| isthe number of edgesinthegeneral
case. If the graph has no cycles at all then the function needs O(|V [+|E|) time to realize this and then
it stops.

Example 13.9. Fileexanpl es/ si npl e/ i graph_girth.c

| graph_eccentricity — Eccentricity of some ver-

tices.

int igraph_eccentricity(const igraph_t *graph,
i graph_vector_t *res,

304

Structural properties of graphs

i graph_vs_t vids,
i graph_nei node_t node);

The eccentricity of avertex is calculated by measuring the shortest distance from (or to) the vertex,
to (or from) all vertices in the graph, and taking the maximum.

This implementation ignores vertex pairsthat are in different components. Isolated vertices have ec-
centricity zero.

Arguments:

graph: Theinput graph, it can be directed or undirected.

res: Pointer to an initialized vector, the result is stored here.
vi ds: The vertices for which the eccentricity is calculated.

node: What kind of paths to consider for the calculation: | GRAPH_COUT, paths that follow edge
directions; | GRAPH_I N, paths that follow the opposite directions; and | GRAPH_ALL,
paths that ignore edge directions. This argument isignored for undirected graphs.
Returns:

Error code.

Time complexity: O(v* (|V|+|E|)), where |V| is the number of vertices, |E| is the number of edges and
v isthe number of vertices for which eccentricity is calculated.

See also:

i graph_radius().

Example 13.10. Fileexanpl es/ si npl e/ i graph_eccentricity.c

| graph_r adi us — Radius of a graph.

int igraph_radius(const igraph_t *graph, igraph_real _t *radi us,
i graph_nei node_t node);

The radius of a graph is the defined as the minimum eccentricity of its vertices, seei gr aph_ec-
centricity().

Arguments:
graph: Theinput graph, it can be directed or undirected.
radi us: Pointer to areal variable, the result is stored here.

node: What kind of pathsto consider for the calculation: | GRAPH_QUT, pathsthat follow edge
directions; | GRAPH I N, paths that follow the opposite directions; and | GRAPH_ALL,
paths that ignore edge directions. This argument isignored for undirected graphs.
Returns:

Error code.

Time complexity: O(V|(|V|+|E])), where V| is the number of vertices and |E| is the number of edges.

305

Structural properties of graphs

See also:

i graph_eccentricity().

Example 13.11. Fileexanpl es/ si npl e/ i graph_radi us. c

Efficiency measures

i graph_gl obal efficiency — Calculates the global
efficiency of a network.

i nt igraph_global efficiency(const igraph_t *graph, igraph_real t *res,
const igraph_vector_t *weights,
i graph_bool t directed);

The global efficiency of a network is defined as the average of inverse distances between al pairs of
vertices E g = 1/ (N*(N-1)) sum{i!=j} 1/d_ij,whereN isthe number of vertices. The
inverse distance between pairs that are not reachable from each other is considered to be zero. For
graphs with fewer than 2 vertices, NaN is returned.

Reference: V. Latora and M. Marchiori, Efficient Behavior of Small-World Networks, Phys. Rev.
Lett. 87, 198701 (2001). https://dx.doi.org/10.1103/PhysRevL ett.87.198701

Arguments:
gr aph: The graph object.
res: Pointer to area number, thiswill contain the result.

wei ght s: The edge weights. All edge weights must be non-negative for Dijkstra's algorithm to
work. Additionally, no edge weight may be NaN. If either case does not hold, an error
is returned. If thisis anull pointer, then the unweighted version, i gr aph_aver -
age_pat h_I| engt h() isusedin calculating the global efficiency.

di rected: Boolean, whether to consider directed paths. Ignored for undirected graphs.

Returns:
Error code:
| GRAPH_ENOMEM not enough memory for data structures
| GRAPH_EI NVAL invalid weight vector

Time complexity: O(|V| [E| log|E| + |[V]) for weighted graphs and O(]V| |E|) for unweighted ones. |V|
denotes the number of vertices and |E| denotes the number of edges.

| graph_| ocal efficiency — Calculates the local
efficiency around each vertex in a network.

int igraph_local _efficiency(const igraph_t *graph, igraph_vector_t *res,

306

https://dx.doi.org/10.1103/PhysRevLett.87.198701

Structural properties of graphs

const igraph_vs_t vids,
const igraph_vector_t *weights,
i graph_bool _t directed, igraph_nei nbde_t node);

The local efficiency of a network around a vertex is defined as follows: We remove the vertex and
compute the distances (shortest path lengths) between its neighbours through the rest of the network.
Thelocal efficiency around the removed vertex is the average of the inverse of these distances.

The inverse distance between two vertices which are not reachable from each other is considered to
be zero. The local efficiency around a vertex with fewer than two neighbours is taken to be zero by

convention.

Reference: |. Vragovi#, E. Louis, and A. Diaz-Guilera, Efficiency of informational transfer in regular
and complex networks, Phys. Rev. E 71, 1 (2005). http://dx.doi.org/10.1103/PhysRevE.71.036122

Arguments:

gr aph:
res:
vi ds:

wei ght s:

di rect ed:

node:

Returns:

Error code:

The graph object.
Pointer to an initialized vector, thiswill contain the result.
The vertices around which the local efficiency will be calculated.

The edge weights. All edge weights must be non-negative. Additionally, no edge
weight may be NaN. If either case does not hold, an error is returned. If thisis a
null pointer, then the unweighted version, i gr aph_aver age_pat h_I engt h()
iscalled.

Boolean, whether to consider directed paths. Ignored for undirected graphs.

How to determine the local neighborhood of each vertex in directed graphs. Ignored
in undirected graphs.

| GRAPH_ALL take both in- and out-neighbours; this is a reasonable default for
high-level interfaces.

| GRAPH_QUT take only out-neighbours

| GRAPH I N take only in-neighbours

| GRAPH_ENOVEM not enough memory for data structures

| GRAPH_EI NVAL invalid weight vector

Time complexity: O(|E*2 log|E]) for weighted graphs and O(|E}*2) for unweighted ones. |E| denotes
the number of edges.

See also:

i graph_average | ocal _efficiency()

| graph_aver age_| ocal _efficiency — Calculates
the average local efficiency in a network.

307

http://dx.doi.org/10.1103/PhysRevE.71.036122

Structural properties of graphs

int igraph_average_l ocal _efficiency(const igraph_t *graph, igraph_real _t *res,
const igraph_vector_t *weights,
i graph_bool _t directed, igraph_nei node_t no

For the null graph, zero is returned by convention.

Arguments:
gr aph: The graph object.
res: Pointer to area number, thiswill contain the result.

wei ght s: The edgeweights. They must beall non-negative. If anull pointer isgiven, all weights
are assumed to be 1.

di rected: Boolean, whether to consider directed paths. Ignored for undirected graphs.

node: How to determine the local neighborhood of each vertex in directed graphs. Ignored
in undirected graphs.

| GRAPH_ALL take both in- and out-neighbours; this is a reasonable default for
high-level interfaces.

| GRAPH_QUT take only out-neighbours

| GRAPH | N take only in-neighbours

Returns:
Error code:
| GRAPH_ENQOVEM not enough memory for data structures
| GRAPH_EI NVAL invalid weight vector

Time complexity: O(|E*2 log|E|) for weighted graphs and O(|E[*2) for unweighted ones. |E| denotes
the number of edges.

See also:

i graph_| ocal _efficiency()

Neighborhood of a vertex

| graph_nei ghbor hood_si ze — Calculates the size
of the neighborhood of a given vertex.

i nt igraph_nei ghborhood_si ze(const igraph_t *graph, igraph_vector_t *res,
i graph_vs_t vids, igraph_integer_t order,
i graph_nei node_t node,
i graph_integer_t mindist);

The neighborhood of agiven order of avertex includes all vertices which are closer to the vertex than
the order. |.e., order O is always the vertex itself, order 1 is the vertex plus its immediate neighbors,
order 2 isorder 1 plus the immediate neighbors of the verticesin order 1, etc.

308

Structural properties of graphs

This function calculates the size of the neighborhood of the given order for the given vertices.
Arguments:

graph: Theinput graph.

res: Pointer to aninitialized vector, theresult will be stored here. It will beresized asneeded.
vi ds: The vertices for which the calculation is performed.

order: Integer giving the order of the neighborhood.

node: Specifies how to use the direction of the edges if a directed graph is analyzed. For

I GRAPH_QUT only the outgoing edges are followed, so all vertices reachable from the
source vertex in at most or der steps are counted. For | GRAPH_| N all vertices from
whichthesourcevertex isreachableinat most or der stepsarecounted. | GRAPH_ALL
ignores the direction of the edges. This argument isignored for undirected graphs.

m ndi st: The minimum distance to include a vertex in the counting. Vertices reachable with a
path shorter than this value are excluded. If this is one, then the starting vertex is not
counted. If thisistwo, then its neighbors are not counted either, etc.

Returns:

Error code.

See also:

i graph_nei ghbor hood() for calculating the actual neighborhood, i gr aph_nei ghbor -
hood_gr aphs() for creating separate graphs from the neighborhoods.

Time complexity: O(n*d*0), where n is the number vertices for which the calculation is performed,
d isthe average degree, o isthe order.

| graph_nei ghbor hood — Calculate the neighbor-
hood of vertices.

i nt igraph_nei ghborhood(const igraph_t *graph, igraph_vector _ptr_t *res,
igraph_vs t vids, igraph_integer_t order,
i graph_nei node_t node, igraph_integer t mndist);

The neighborhood of a given order of avertex includes all vertices which are closer to the vertex than
the order. |.e., order O is always the vertex itself, order 1 is the vertex plus its immediate neighbors,
order 2 isorder 1 plus the immediate neighbors of the verticesin order 1, etc.

This function cal culates the vertices within the neighborhood of the specified vertices.
Arguments:
graph: Theinput graph.

res: Aninitialized pointer vector. Note that the objects (pointers) in the vector will not be
freed, but the pointer vector will be resized as needed. The result of the calculation will
be stored hereini gr aph_vect or _t objects.

vi ds: The vertices for which the calculation is performed.

309

Structural properties of graphs

order: Integer giving the order of the neighborhood.

node: Specifies how to use the direction of the edges if a directed graph is analyzed. For
| GRAPH_QUT only the outgoing edges are followed, so all vertices reachable from
the source vertex in at most or der steps are included. For | GRAPH | N all ver-
tices from which the source vertex is reachable in at most or der steps are included.
| GRAPH_ALL ignores the direction of the edges. This argument is ignored for undi-
rected graphs.

m ndi st: The minimum distance to include a vertex in the counting. Vertices reachable with a
path shorter than this value are excluded. If this is one, then the starting vertex is not
counted. If thisistwo, then its neighbors are not counted either, etc.

Returns:

Error code.

See also:

i graph_nei ghbor hood_si ze() to caculae the size of the neighborhood,
i gr aph_nei ghbor hood_gr aphs() for creating graphs from the neighborhoods.

Time complexity: O(n*d*0), n is the number of vertices for which the calculation is performed, d is
the average degree, o isthe order.

| gr aph_nei ghbor hood_gr aphs — Create graphs
from the neighborhood(s) of some vertex/vertices.

i nt igraph_nei ghborhood_graphs(const igraph_t *graph, igraph_vector_ptr_t *res,
i graph_vs_t vids, igraph_integer_t order,
i graph_nei node_t node,
i graph_integer _t mndist);

The neighborhood of a given order of avertex includes all vertices which are closer to the vertex than
the order. le. order O is aways the vertex itself, order 1 is the vertex plus its immediate neighbors,
order 2 isorder 1 plus the immediate neighbors of the verticesin order 1, etc.

This function finds every vertex in the neighborhood of a given parameter vertex and creates the
induced subgraph from these vertices.

The first version of this function was written by Vincent Matossian, thanks Vincent.
Arguments:
graph: Theinput graph.

res: Pointer to apointer vector, theresult will be stored here, ie. r es will contain pointersto
i graph_t objects. It will be resized if needed but note that the objects in the pointer
vector will not be freed.

vi ds: The vertices for which the calculation is performed.
order: Integer giving the order of the neighborhood.
node: Specifies how to use the direction of the edges if a directed graph is analyzed. For

I GRAPH_QUT only the outgoing edges are followed, so all vertices reachable from the
source vertex in at most or der steps are counted. For | GRAPH_| N all vertices from

310

Structural properties of graphs

whichthesourcevertex isreachableinat most or der stepsarecounted. | GRAPH_ALL
ignores the direction of the edges. This argument isignored for undirected graphs.

m ndi st: The minimum distance to include a vertex in the counting. Vertices reachable with a
path shorter than this value are excluded. If this is one, then the starting vertex is not
counted. If thisistwo, then its neighbors are not counted either, etc.

Returns:

Error code.

See also:

i graph_nei ghbor hood_si ze() for caculating the neighborhood sizes only,
i graph_nei ghbor hood() for calculating the neighborhoods (but not creating graphs).

Time complexity: O(n* ([V|+|E])), where n is the number vertices for which the calculation is per-
formed, |V| and |E| are the number of vertices and edges in the original input graph.

Local scan statistics

The scan statistic isasummary of the locality statistics that is computed from the local neighborhood
of each vertex. For details, see Priebe, C. E., Conroy, J. M., Marchette, D. J,, Park, Y. (2005). Scan
Statistics on Enron Graphs. Computational and Mathematical Organization Theory.

"Us" statistics

I graph_Il ocal _scan_0 — Local scan-statistics, k=0

int igraph_local _scan_0O(const igraph_t *graph, igraph_vector t *res,
const igraph_vector_t *weights,
i graph_nei node_t node);

K=0 scan-statistics is arbitrarily defined as the vertex degree for unweighted, and the vertex strength
for weighted graphs. Seei gr aph_degree() andi gr aph_strengt h().

Arguments:

gr aph: The input graph

res: An initialized vector, the results are stored here.

wei ght's: Weight vector for weighted graphs, null pointer for unweighted graphs.

node: Type of the neighborhood, | GRAPH_OUT means outgoing, | GRAPH_| N means in-
coming and | GRAPH_ALL means all edges.

Returns:

Error code.

I graph_l ocal _scan_1 ecount — Local scan-statistics, k=1,
edge count and sum of weights

311

Structural properties of graphs

int igraph_local _scan_1 ecount(const igraph_t *graph, igraph_vector_t *res,
const igraph_vector_t *weights,
i graph_nei node_t node);

Count the number of edges or the sum the edge weightsin the 1-neighborhood of vertices.

Arguments:

gr aph: The input graph

res: Aninitialized vector, the results are stored here.

wei ghts: Weight vector for weighted graphs, null pointer for unweighted graphs.

node: Type of the neighborhood, | GRAPH_QOUT means outgoing, | GRAPH_| N means in-

coming and | GRAPH_ALL means all edges.

Returns:

Error code.

I graph_| ocal scan_k ecount — Sum the number of edges or
the weights in k-neighborhood of every vertex.

int igraph_local _scan_k _ecount(const igraph_t *graph, int k,
i graph_vector_t *res,
const igraph_vector_t *weights,
i graph_nei node_t node);
Arguments:

gr aph: The input graph.

k: The size of the neighborhood, non-negative integer. The k=0 case is specia, see
i graph_l ocal _scan_0().

res: An initialized vector, the results are stored here.

wei ght's: Weight vector for weighted graphs, null pointer for unweighted graphs.

node: Type of the neighborhood, | GRAPH_QOUT means outgoing, | GRAPH_| N means in-
coming and | GRAPH_ALL means all edges.

Returns:

Error code.

"Them" statistics

I graph_l ocal _scan_0_t hem— Local THEM scan-statistics, k=0

312

Structural properties of graphs

int igraph_local _scan_0_them(const igraph_t *us, const igraph_t *them
i graph_vector_t *res,
const igraph_vector_t *weights_them
i graph_nei node_t node);

K=0 scan-statistics is arbitrarily defined as the vertex degree for unweighted, and the vertex strength
for weighted graphs. Seei gr aph_degree() andi gr aph_strength().

Arguments:

us: Theinput graph, to use to extract the neighborhoods.
t hem Theinput graph to use for the actually counting.
res: Aninitialized vector, the results are stored here.

wei ghts_them Weight vector for weighted graphs, null pointer for unweighted graphs.

node: Type of the neighborhood, | GRAPH _OUT means outgoing, | GRAPH | N
means incoming and | GRAPH_ALL means all edges.

Returns:

Error code.

I graph_l ocal _scan_1 ecount t hem— Local THEM scan-sta-
tistics, k=1, edge count and sum of weights

int igraph_local _scan_1_ecount_then(const igraph_t *us, const igraph_t *them
i graph_vector_t *res,
const igraph_vector_t *weights_them
i graph_nei node_t node);

Count the number of edges or the sum the edge weightsin the 1-neighborhood of vertices.

Arguments:
us: Theinput graph to extract the neighborhoods.
t hem The input graph to perform the counting.

wei ghts_them Weight vector for weighted graphs, null pointer for unweighted graphs.

node: Type of the neighborhood, | GRAPH OUT means outgoing, | GRAPH_ | N
means incoming and | GRAPH_ALL means all edges.

Returns:

Error code.

See also:

i graph_l ocal _scan_1 ecount () forthe US statistics.

313

Structural properties of graphs

I graph_l ocal _scan_k _ecount t hem— Local THEM scan-sta-
tistics, general function, edge count and sum of weights

int igraph_local _scan_k_ecount _then(const igraph_t *us, const igraph_t *them
int k, igraph_vector_t *res,
const igraph_vector_t *weights_them
i graph_nei node_t node);

Count the number of edges or the sum the edge weightsin the k-neighborhood of vertices.

Arguments:

us: The input graph to extract the neighborhoods.

t hem The input graph to perform the counting.

k: The size of the neighborhood, non-negative integer. The k=0 caseis special, see

i graph_l ocal _scan_0_then).

wei ght s_t hem Weight vector for weighted graphs, null pointer for unweighted graphs.

node: Type of the neighborhood, | GRAPH OUT means outgoing, | GRAPH_ | N
means incoming and | GRAPH_ALL means all edges.

Returns:

Error code.

See also:

i graph_l ocal _scan_1 ecount () for the US statistics.

Pre-calculated neighborhoods

I graph_| ocal scan_nei ghbor hood ecount — Local scan-sta-
tistics with pre-calculated neighborhoods

i nt igraph_local scan_nei ghbor hood ecount (const igraph_t *graph,
i graph_vector _t *res,
const igraph_vector_t *weights,
const igraph_vector_ptr_t *nei ghborhoods);

Count the number of edges, or sum the edge weigths in neighborhoods given as a parameter.

Arguments:

graph: The graph to perform the counting/summing in.

res: Initialized vector, the result is stored here.

wei ght s: Weight vector for weighted graphs, null pointer for unweighted graphs.

314

Structural properties of graphs

nei ghbor hoods: Listofi graph_vector i nt_t objects, the neighborhoods, one for each
vertex in the graph.
Returns:

Error code.

Graph components

| gr aph_subconponent — The vertices in the same
component as a given vertex.

i nt igraph_subconmponent(const igraph_t *graph, igraph _vector_t *res, igraph_rea
i graph_nei node_t node);
Arguments:
gr aph: The graph object.
res: The result, vector with the ids of the vertices in the same component.
vertex: Theid of the vertex of which the component is searched.
node: Type of the component for directed graphs, possible values:
| GRAPH _QUT the set of verticesreachable fromthevert ex,
| GRAPH I N theset of vertices from which thever t ex isreachable.
| GRAPH_ALL thegraphisconsidered as an undirected graph. Note that thisis not the
same as the union of the previous two.
Returns:
Error code:
| GRAPH_ENOVEM not enough memory for temporary data.
| GRAPH EI NWI D vertexisaninvaid vertex id
| GRAPH_EI NVMODE invalid mode argument passed.
Time complexity: O(|V|+|E|), V| and |E| are the number of vertices and edges in the graph.
See also:

i graph_i nduced_subgr aph() if youwant agraph object consisting only a given set of ver-
tices and the edges between them.

| graph_cl ust ers — Calculates the (weakly or
strongly) connected components in a graph.

315

Structural properties of graphs

int igraph_clusters(const igraph_t *graph, igraph_vector_t *nenbership,
i graph_vector_t *csize, igraph_integer_t *no,
i graph_connect edness_t node) ;

Arguments:

graph: The graph object to analyze.

nmenber shi p: First half of the result will be stored here. For every vertex the id of its component
is given. The vector hasto be preinitialized and will be resized. Alternatively this
argument can be NULL, in which caseit isignored.

csi ze: The second half of the result. For every component it givesits size, the order isde-
fined by the component ids. The vector hasto be preinitialized and will be resized.
Alternatively this argument can be NULL, in which caseit isignored.

no: Pointer to an integer, if not NULL then the number of clusters will be stored here.

node: For directed graph this specifies whether to cal culate weakly or strongly connected
components. Possiblevalues: | GRAPH_WEAK, | GRAPH_STRONG. Thisargument
isignored for undirected graphs.

Returns:

Error code: | GRAPH_EI NVAL: invalid mode argument.

Time complexity: O(|V|+|E]), V| and |E| are the number of vertices and edgesin the graph.

i graph_i s _connect ed — Decides whether the graph
is (weakly or strongly) connected.

int igraph_is_connected(const igraph_t *graph, igraph_bool_t *res,
i graph_connect edness_t node);

A graph with zero vertices (i.e. the null graph) is not connected by definition. This behaviour changed
in igraph 0.9; earlier versions assumed that the null graph is connected. See the following issue
on Github for the argument that led us to change the definition: https://github.com/igraph/igraph/is-
sues/1538

Arguments:
graph: The graph object to analyze.
res: Pointer to alogical variable, the result will be stored here.

node: For adirected graph this specifieswhether to cal culate weak or strong connectedness. Pos-
siblevalues: | GRAPH_VEAK, | GRAPH_STRONG. Thisargument isignored for undirect-
ed graphs.

Returns:

Error code: | GRAPH_EI NVAL : invalid mode argument.

Time complexity: O(|V|+|E|), the number of vertices plus the number of edgesin the graph.

316

https://github.com/igraph/igraph/issues/1538
https://github.com/igraph/igraph/issues/1538

Structural properties of graphs

| gr aph_deconpose — Decompose a graph into con-
nected components.

i nt igraph_deconpose(const igraph_t *graph, igraph_vector_ptr_t *conponents,
i graph_connect edness_t node,
[ong int maxconpno, long int mnelenents);

Create separate graph for each component of a graph. Note that the vertex ids in the new graphs will
be different than in the original graph. (Except if thereis only one component in the original graph.)

Arguments:

graph: The original graph.

conponents: This pointer vector will contain pointersto the subcomponent graphs. It should be
initialized before calling thisfunction and will beresized to hold the graphs. Don't
forgettocal i graph_destroy() andi graph_free() ontheelementsof
this pointer vector to free unneeded memory. Alternatively, you can smply call
i graph_deconpose_dest r oy() that doesthisfor you.

node: Either | GRAPH_WEAK or | GRAPH_STRONGfor weakly and strongly connected
components respectively.

naxconpno: The maximum number of components to return. The first maxconpno compo-

nentswill be returned (which hold at least ni nel erment s vertices, see the next
parameter), the others will be ignored. Supply -1 here if you don't want to limit
the number of components.

m nel ements: The minimum number of vertices a component should contain in order to place
itinthe conponent s vector. Eg. supply 2 here to ignore isolated vertices.

Returns:

Error code, | GRAPH_ENOVEMIf there is not enough memory to perform the operation.
Added in version 0.2.

Time complexity: O(|V|+|E|), the number of vertices plus the number of edges.

Example 13.12. Fileexanpl es/ si npl e/ i gr aph_deconpose. c

| gr aph_deconpose_destr oy — Free the memory al-
located by i gr aph_deconpose().

voi d i graph_deconpose_destroy(i graph_vector _ptr_t *conplist);

Arguments:
conpl i st: Thelist of graph components, asreturned by i gr aph_deconpose() .

Time complexity: O(c), ¢ isthe number of components.

317

Structural properties of graphs

| graph_bi connect ed_conponent s — Calculate bi-
connected components

i nt igraph_bi connected _conponents(const igraph_t *graph
i graph_integer_t *no,
i graph_vector _ptr_t *tree_edges,
i graph_vector _ptr_t *conponent edges,
i graph_vector _ptr_t *conponents,
i graph_vector t *articulation_points);

A graph isbiconnected if the removal of any single vertex (and itsincident edges) does not disconnect
it.

A biconnected component of a graph isamaximal biconnected subgraph of it. The biconnected com-
ponents of a graph can be given by the partition of its edges: every edge is a member of exactly one
biconnected component. Note that this is not true for vertices: the same vertex can be part of many
biconnected components.

Somewhat arbitrarily, igraph does not consider components containing a single vertex only as being
biconnected. Isolated vertices will not be part of any of the biconnected components.

Arguments:
gr aph: The input graph.
no: The number of biconnected components will be stored here.

tree_edges: If not a NULL pointer, then the found components are stored here,
in alist of vectors. Every vector in the list is a biconnected com-
ponent, represented by its edges. More precisely, a spanning tree of
the biconnected component is returned. Note you'll have to destroy
each vector first by calling i gr aph_vect or _destroy() and
theni graph_free() onit, plusyouneedtocal i gr aph_vec-
tor_ptr_destroy() onthelisttoregain al alocated memory.

conponent _edges: If not aNULL pointer, then the edges of the biconnected components
are stored here, inthe sameform asfort r ee_edges.

conponents: If not aNULL pointer, then the vertices of the biconnected compo-
nents are stored here, in the same format as for the previous two ar-
guments.

articulation_points: If notaNULL pointer, then the articulation points of the graph are
stored in this vector. A vertex is an articulation point if its removal
increasesthe number of (weakly) connected componentsin the graph.

Returns:

Error code.

Time complexity: O(|V [+|E]), linear inthe number of verticesand edges, but only if you do not calcul ate
component s and conponent _edges. If you calculate conponent s, then it isquadratic in the
number of vertices. If you calculate conponent _edges aswell, then it is cubic in the number of
vertices.

See also:

318

Structural properties of graphs

i graph_articul ation_points(),igraph_clusters().

Example 13.13. File exanpl es/ si npl e/
i graph_bi connect ed_conponents. c

i graph_articul ati on_poi nt s — Find the articula-
tion points in a graph.

int igraph_articul ation_points(const igraph_t *graph,
i graph_vector t *res);

A vertex is an articulation point if its removal increases the number of connected components in the
graph.

Arguments:
graph: Theinput graph.

res: Pointer to an initialized vector, the articulation points will be stored here.

Returns:

Error code.
Time complexity: O(|V|+|E]), linear in the number of vertices and edges.
See also:

i graph_bi connect ed_component s(),i graph_clusters(),igraph_bridges()

| graph_bri dges — Find all bridges in a graph.

int igraph_bridges(const igraph_t *graph, igraph_vector_t *bridges);
Anedgeisabridgeif itsremoval increasesthe number of (weakly) connected componentsin the graph.
Arguments:

graph: Theinput graph.

res: Pointer to an initialized vector, the bridges will be stored here as edge indices.

Returns:

Error code.
Time complexity: O(|V|+|E]), linear in the number of vertices and edges.
See also:

i graph_articul ati on_points(), i graph_bi connect ed_conponent s(),
i graph_cl usters()

319

Structural properties of graphs

Degree sequences

| graph_i s _graphi cal —Is there a graph with the
given degree sequence?

int igraph_is_graphical (const igraph_vector_t *out degrees,
const igraph_vector_t *in_degrees,
const igraph_edge type sw t allowed_edge types,
i graph_bool t *res);

Determines whether a sequence of integers can be the degree sequence of some graph. The classical
concept of graphicality assumes simple graphs. This function can perform the check also when either
self-loops, multi-edge, or both are alowed in the graph.

For ssimple undirected graphs, the Erd#s-Gallai conditions are checked using the linear-time algorithm
of Cloteaux. If both self-loops and multi-edges are allowed, it is sufficient to chek that that sum of
degrees is even. If only multi-edges are allowed, but not self-loops, there is an additional condition
that the sum of degrees be no smaller than twice the maximum degree. If at most one self-loop is
allowed per vertex, but no multi-edges, a modified version of the Erd#s-Gallai conditions are used
(see Cairns & Mendan).

For simpledirected graphs, the Fulkerson-Chen-Anstee theorem is used with the rel axation by Berger.
If both self-loops and multi-edges are alowed, then it is sufficient to check that the sum of in- and
out-degreesisthe same. If only multi-edges are allowed, but not self loops, thereis an additional con-
dition that the sum of out-degrees (or equivalently, in-degrees) is no smaller than the maximum total
degree. If single self-loops are allowed, but not multi-edges, the problem is equivalent to realizability
as asimple hipartite graph, thus the Gale-Ryser theorem can be used; seei gr aph_i s_bi gr aph-
i cal () for moreinformation.

References:

P. Erd#s and T. Gallai, Gr&fok el#irt fok(pontokkal, Matematikai Lapok 11, pp. 264-274 (1960).
https://users.renyi.hu/~p_erdos/1961-05.pdf

Z Kirdly, Recognizing graphic degree sequences and generating all realizations. TR-2011-11,
Egervéry Research Group, H-1117, Budapest, Hungary. ISSN 1587-4451 (2012). http://bolyai.c-
s.elte.hu/egres/tr/egres-11-11.pdf

B. Cloteaux, Is This for Real? Fast Graphicality Testing, Comput. Sci. Eng. 17, 91 (2015). https://
dx.doi.org/10.1109/M CSE.2015.125

A. Berger, A note on the characterization of digraphic sequences, Discrete Math. 314, 38 (2014).
https://dx.doi.org/10.1016/j.disc.2013.09.010

G. Cairns and S. Mendan, Degree Sequence for Graphs with Loops (2013). https://arxiv.org/ab-

§/1303.2145v1

Arguments:

out degr ees: A vector of integers specifying the degree sequence for undirected
graphs or the out-degree sequence for directed graphs.

i n_degr ees: A vector of integers specifying the in-degree sequence for directed

graphs. For undirected graphs, it must be NULL.

al | owed_edge_types: Thetypesof edgesto alow in the graph:

320

https://users.renyi.hu/~p_erdos/1961-05.pdf
http://bolyai.cs.elte.hu/egres/tr/egres-11-11.pdf
http://bolyai.cs.elte.hu/egres/tr/egres-11-11.pdf
https://dx.doi.org/10.1109/MCSE.2015.125
https://dx.doi.org/10.1109/MCSE.2015.125
https://dx.doi.org/10.1016/j.disc.2013.09.010
https://arxiv.org/abs/1303.2145v1
https://arxiv.org/abs/1303.2145v1

Structural properties of graphs

| GRAPH_SI MPLE_SW simplegraphs(i.e. no self-loops
or multi-edges allowed).

| GRAPH_LOOPS_SW single self-loops are allowed,
but not multi-edges.

| GRAPH MULTI _SW multi-edges are alowed, but
not self-loops.

| GRAPH_LOOPS_SW | both self-loops and multi-edges

| GRAPH_MULTI _SW are alowed.

res: Pointer to a Boolean. The result will be stored here.

Returns:

Error code.

See also:
i graph_i s_bi graphical () to check if a bi-degree-sequence can be realized as a bipartite
graph; i graph_real i ze_degree_sequence() to construct a graph with a given degree
sequence.

Time complexity: O(n"2) for simple directed graphs, O(n log n) for graphs with self-loops, and O(n)
for al other cases, where nisthe length of the degree sequence(s).

| graph_i s_bi graphi cal — Is there a bipartite graph
with the given bi-degree-sequence?

int igraph_is_bigraphical (const igraph_vector_t *degreesli,
const igraph_vector_t *degrees2,
const igraph_edge type sw t allowed_edge types,
i graph_bool t *res);

Determines whether two sequences of integers can be the degree sequences of a bipartite graph. Such
apair of degree sequenceis called bigraphical.

When multi-edges are allowed, it is sufficient to check that the sum of degrees is the same in the two
partitions. For simple graphs, the Gale-Ryser theorem is used with Berger's relaxation.

References:

H. J. Ryser, Combinatorial Properties of Matrices of Zeros and Ones, Can. J. Math. 9, 371 (1957).
https://dx.doi.org/10.4153/cjm-1957-044-3

D. Gale, A theorem on flowsin networks, Pacific J. Math. 7, 1073 (1957). https://dx.doi.org/10.2140/
pjm.1957.7.1073

A. Berger, A note on the characterization of digraphic sequences, Discrete Math. 314, 38 (2014).
https://dx.doi.org/10.1016/j.disc.2013.09.010

Arguments:

degreesl: A vector of integers specifying the degreesin the first partition

321

https://dx.doi.org/10.4153/cjm-1957-044-3
https://dx.doi.org/10.2140/pjm.1957.7.1073
https://dx.doi.org/10.2140/pjm.1957.7.1073
https://dx.doi.org/10.1016/j.disc.2013.09.010

Structural properties of graphs

degr ees2: A vector of integers specifying the degrees in the second partition

al | owed_edge_types: Thetypesof edgesto alow in the graph:
| GRAPH_SI MPLE_SW simplegraphs(i.e. no multi-edges allowed).
| GRAPH_MULTI _SW multi-edges are allowed.

res: Pointer to a Boolean. The result will be stored here.

Returns:

Error code.

See also:
i graph_i s_graphical ()

Time complexity: O(n log n) for ssimple graphs, O(n) for multigraphs, where n is the length of the
larger degree seguence.

| graph_iI s_degree_seqguence — Determines whether
a degree sequence is valid.

int igraph_is_degree_sequence(const igraph_vector_t *out_ degrees,
const igraph_vector_t *in_degrees, igraph_bool t

Warning

Deprecated since version 0.9. Please do not use this function in new code, use
i graph_i s_graphical () instead.

A sequence of nintegersisavalid degree sequence if there exists some graph where the degree of the
i-th vertex is equal to the i-th element of the sequence. Note that the graph may contain multiple or
loop edges; if you are interested in whether the degrees of some simple graph may realize the given
sequence, usei gr aph_i s_graphi cal _degree_sequence.

In particular, the function checks whether all the degrees are non-negative. For undirected graphs, it
also checks whether the sum of degreesis even. For directed graphs, the function checks whether the
lengths of the two degree vectors are equal and whether their sums are also equal. These are known
sufficient and necessary conditions for a degree sequence to be valid.

Arguments:

out _degrees: aninteger vector specifying the degree sequence for undirected graphs or the out-
degree sequence for directed graphs.

i n_degr ees: an integer vector specifying the in-degrees of the verticesfor directed graphs. For
undirected graphs, this must be null.

res: pointer to aboolean variable, the result will be stored here

Returns:

322

Structural properties of graphs

Error code.

Time complexity: O(n), where n isthe length of the degree sequence.

i graph_i s _graphi cal degree_sequence — Deter-
mines whether a sequence of integers can be the de-
gree sequence of some simple graph.

int igraph_is_graphical _degree_sequence(const igraph_vector_t *out_degrees,
const igraph_vector_t *in_degrees, igra

Warning
Deprecated since version 0.9. Please do not use this function in new code; use
i graph_i s_graphical () instead.

References:

Hakimi SL: On the realizability of a set of integers as degrees of the vertices of a simple graph. J
SIAM Appl Math 10:496-506, 1962.

PL Erd#s, | Miklés and Z Toroczkai: A simple Havel-Hakimi type algorithm to realize graphical de-
gree sequences of directed graphs. The Electronic Journal of Combinatorics 17(1):R66, 2010. https.//
dx.doi.org/10.1017/S0963548317000499

Z Kiray: Recognizing graphic degree sequences and generating all realizations. TR-2011-11,
Egervary Research Group, H-1117, Budapest, Hungary. ISSN 1587-4451, 2012. https.//lwww.c-
s.elte.hu/egres/tr/egres-11-11.pdf

Arguments:

out degrees: aninteger vector specifying the degree sequence for undirected graphs or the out-
degree sequence for directed graphs.

i n_degr ees: an integer vector specifying the in-degrees of the verticesfor directed graphs. For
undirected graphs, this must be null.

res: pointer to aboolean variable, the result will be stored here

Returns:
Error code.

Time complexity: O(n log n) for undirected graphs, O(n"2) for directed graphs, where nis the length
of the degree sequence.

Centrality measures

| graph_cl oseness — Closeness centrality calcula-
tions for some vertices.

323

https://dx.doi.org/10.1017/S0963548317000499
https://dx.doi.org/10.1017/S0963548317000499
https://www.cs.elte.hu/egres/tr/egres-11-11.pdf
https://www.cs.elte.hu/egres/tr/egres-11-11.pdf

Structural properties of graphs

i nt igraph_cl oseness(const igraph_t *graph, igraph_vector_t *res,
i graph_vector_t *reachabl e_count, igraph_bool _t
const igraph_vs_t vids, igraph_neinode_t node,
const igraph_vector_t *weights,
i graph_bool _t normalized);

The closeness centrality of avertex measures how easily other vertices can be reached from it (or the
other way: how easily it can be reached from the other vertices). It is defined as the inverse of the
mean distance to (or from) all other vertices.

Closeness centrality is meaningful only for connected graphs. If the graph is not connected, igraph
computes the inverse of the mean distance to (or from) all reachable vertices. In undirected graphs,
this is equivalent to computing the closeness separately in each connected component. The optional
al I _reachabl e output parameter is provided to help detect when the graph is disconnected.

While there is no universally adopted definition of closeness centrality for disconnected graphs, there
have been some attempts for generalizing the concept to the disconnected case. One type of approach
considersthe mean distance only to reachable vertices, then re-scales the obtained certrality scoreby a
factor that depends on the number of reachable vertices(i.e. the size of the component inthe undirected
case). To facilitate computing these generalizations of closeness centrality, the number of reachable
vertices (not including the starting vertex) isreturned inr eachabl e_count .

In disconnected graphs, consider using the harmonic centrality, computable using i gr aph_har -
noni c_centrality().

For isolated vertices, i.e. those having no associated paths, NaN is returned.

Arguments:
gr aph: The graph object.
res: The result of the computation, a vector containing the closeness centrality

scores for the given vertices.

reachabl e_count: If not NULL, thisvector will contain the number of vertices reachable from
each vertex for which the closenessis calculated (not including that vertex).

al | _reachabl e: Pointer to a Boolean. If not NULL, it indicates if all vertices of the graph
were reachable from each vertex in vi ds. If false, the graph is non-con-
nected If true, and the graph is undirected, or if the graph is directed and
vi ds contains al vertices, then the graph is connected.

vi ds: The vertices for which the closeness centrality will be computed.

node: The type of shortest paths to be used for the calculation in directed graphs.
Possible values:

I GRAPH_QUT thelengths of the outgoing paths are calcul ated.
| GRAPH I N thelengths of the incoming paths are cal culated.

| GRAPH_ALL thedirected graph is considered as an undirected one for
the computation.

wei ght s: An optional vector containing edge weights for weighted closeness. No
edge weight may be NaN. Supply a null pointer here for traditional, un-
weighted closeness.

normal i zed: If true, the inverse of the mean distance to reachable vetices is returned. If
false, the inverse of the sum of distancesis returned.

324

*al | _reach

Structural properties of graphs

Returns:
Error code:
| GRAPH_ENOVEM not enough memory for temporary data.
| GRAPH_EI NwWI D invalid vertex id passed.
| GRAPH_EI NVMODE invalid mode argument.

Time complexity: O(n|E]), n is the number of vertices for which the calculation is done and |E| is the
number of edgesin the graph.

See also:

Other centrality types: i gr aph_degr ee() ,i gr aph_bet weenness(),i gr aph_har non-
ic_centrality().Seeigraph_cl oseness_cutoff () for the range-limited closeness
centrality.

| graph_harnoni c_central ity — Harmonic centrali-
ty for some vertices.

int igraph_harnonic_centrality(const igraph_t *graph, igraph_vector_t *res,
const igraph_vs_t vids, igraph_neinode_t node,
const igraph_vector_t *weights,
i graph_bool _t normalized);

The harmonic centrality of a vertex is the mean inverse distance to all other vertices. The inverse
distance to an unreachable vertex is considered to be zero.

References:

M. Marchiori and V. Latora, Harmony in the small-world, PhysicaA 285, pp. 539-546 (2000). https.//
doi.org/10.1016/S0378-4371%2800%2900311-3

Y. Rochat, Closeness Centrality Extended to Unconnected Graphs: the Harmonic Centrality Index,
ASNA 2009. https://infoscience.epfl.ch/record/200525

S. Vigna and P. Boldi, Axioms for Centrality, Internet Mathematics 10, (2014). https.//
doi.org/10.1080/15427951.2013.865686

Arguments:

graph: The graph object.

res: The result of the computation, a vector containing the harmonic centrality scores
for the given vertices.

vi ds: The vertices for which the harmonic centrality will be computed.

node: Thetype of shortest pathsto be used for the calculation in directed graphs. Possible

values:
I GRAPH_QUT thelengths of the outgoing paths are calcul ated.

| GRAPH I N thelengths of the incoming paths are cal cul ated.

325

https://doi.org/10.1016/S0378-4371%2800%2900311-3
https://doi.org/10.1016/S0378-4371%2800%2900311-3
https://infoscience.epfl.ch/record/200525
https://doi.org/10.1080/15427951.2013.865686
https://doi.org/10.1080/15427951.2013.865686

Structural properties of graphs

| GRAPH_ALL thedirected graphisconsidered asan undirected one for the com-
putation.

wei ght s: An optional vector containing edge weights for weighted harmonic centrality. No
edge weight may be NaN. If NULL, all weights are considered to be one.

normal i zed: Boolean, whether to normalize theresult. If true, the result isthe mean inverse path
length to other vertices, i.e. it is normalized by the number of vertices minus one.
If false, the result is the sum of inverse path lengths to other vertices.
Returns:
Error code:
| GRAPH_ENOVEM not enough memory for temporary data.
| GRAPH_EI NwWI D invalid vertex id passed.
| GRAPH_EI NVMODE invalid mode argument.

Time complexity: O(n|E|), where n is the numberof vertices for which the calculation is done and |E|
is the number of edgesin the graph.

See also:

Other centrality types: i gr aph_cl oseness(),i graph_degree(),i graph_bet ween-
ness().

| graph_bet weenness — Betweenness centrality of
some vertices.

i nt igraph_betweenness(const igraph_t *graph, igraph_vector_t *res,
const igraph_vs_t vids, igraph_bool t directed,
const igraph_vector_t* weights);

The betweenness centrality of avertex isthe number of geodesics going through it. If there are more
than one geodesic between two vertices, the value of these geodesics are weighted by one over the
number of geodesics.

Arguments:

graph: The graph object.

res: Theresult of the computation, avector containing the betweenness scoresfor the spec-
ified vertices.

vi ds: The vertices of which the betweenness centrality scores will be calculated.

directed: Logical, if true directed pathswill be considered for directed graphs. It isignored for
undirected graphs.

wei ght s: An optional vector containing edge weightsfor cal culating weighted betweenness. No
edge weight may be NaN. Supply anull pointer here for unweighted betweenness.

Returns:

326

Structural properties of graphs

Error code: | GRAPH_ENQVEM not enough memory for temporary data. | GRAPH_EI NVI D, in-
valid vertex id passed invi ds.

Time complexity: O(|V||E]), [V| and |E| are the number of vertices and edges in the graph. Note that
the time complexity is independent of the number of vertices for which the score is calculated.

See also:

Other centrality types: i graph_degree(), i graph_cl oseness(). See
i graph_edge_bet weenness() for calculating the betweenness score of the edgesin agraph.
Seei graph_bet weenness_cut of f () to calculate the range-limited betweenness of the ver-
ticesin agraph.

| gr aph_edge bet weenness — Betweenness centrali-
ty of the edges.

i nt igraph_edge_betweenness(const igraph_t *graph, igraph_vector_t *result,
i graph_bool _t directed,
const igraph_vector_t *weights);

The betweenness centrality of an edge is the number of geodesics going through it. If there are more
than one geodesics between two vertices, the value of these geodesics are weighted by one over the
number of geodesics.

Arguments:
gr aph: The graph object.
result: Theresult of the computation, vector containing the betweenness scoresfor the edges.

di rected: Logical, if truedirected pathswill be considered for directed graphs. It isignored for
undirected graphs.

wei ght s: An optional weight vector for weighted edge betweenness. No edge weight may be
NaN. Supply anull pointer here for the unweighted version.

Returns:
Error code: | GRAPH_ENQVEM not enough memory for temporary data.

Time complexity: O(|V||E]), V| and |E| are the number of vertices and edges in the graph.

See also:
Other centrality types. igraph_degree(), igraph_closeness(). See
i graph_edge_bet weenness() for calculating the betweenness score of the edgesin agraph.

See i gr aph_edge_bet weenness_cut of f () to compute the range-limited betweenness
score of the edgesin agraph.

| graph_pager ank_al go_t — PageRank algorithm
implementation

327

Structural properties of graphs

typedef enum {

| GRAPH_PAGERANK_ALGO ARPACK = 1,
| GRAPH_PAGERANK_ALGO PRPACK = 2
} igraph_pagerank_al go_t;
Algorithmsto cal cul ate PageRank.
Values:
| GRAPH PAGERANK _AL- Usethe ARPACK library, this was the PageRank implementa-
GO_ARPACK: tion in igraph from version 0.5, until version 0.7.
| GRAPH PAGERANK_AL- Usethe PRPACK library. Currently thisimplementationisrec-
GO _PRPACK: ommended.

| gr aph_pager ank — Calculates the Google PageR-
ank for the specified vertices.

i nt igraph_pagerank(const igraph_t *graph, igraph_pagerank_al go_t al go,
i graph_vector_t *vector,
i graph_real t *value, const igraph_vs_ t vids,
i graph_bool t directed, igraph_real t danping,
const igraph_vector_t *weights, igraph_arpack options_t *op

The PageRank centrality of avertex isthefraction of timearandom walker traversing the graph would
spend on that vertex. Thewalker follows the out-edges with probabilities proportional to their weights.
Additionally, in each step, it restarts the walk from arandom vertex with probability 1 - danpi ng.
If the random walker gets stuck in asink vertex, it will also restart from arandom vertex.

The PageRank centrality is mainly useful for directed graphs. In undirected graphs it converges to
trivial values proportional to degrees as the damping factor approaches 1.

Starting from version 0.9, igraph hastwo PageRank implementations, and the user can choose between
them. Thefirstimplementationis| GRAPH _PAGERANK_AL GO ARPACK, based onthe ARPACK li-
brary. Thiswasthe default beforeigraph version 0.7. The second and recommended implementation is
| GRAPH_PAGERANK _ALGO PRPACK. Thisisusing the PRPACK package, see https://github.com/
dgleich/prpack .

Note that the PageRank of a given vertex depends on the PageRank of all other vertices, so even if
you want to calculate the PageRank for only some of the vertices, all of them must be calculated.
Requesting the PageRank for only some of the vertices does not result in any performance increase
at all.

References:

Sergey Brin and Larry Page: The Anatomy of a Large-Scale Hypertextual Web Search Engine. Pro-
ceedings of the 7th World-Wide Web Conference, Brisbane, Australia, April 1998.

Arguments:

gr aph: The graph object.

al go: The PageRank implementation to use. Possible values. | GRAPH PAGERANK AL -
GO ARPACK, | GRAPH_PAGERANK_ALGO PRPACK.

vector: Pointer to an initialized vector, the result is stored here. It is resized as needed.

328

https://github.com/dgleich/prpack
https://github.com/dgleich/prpack

Structural properties of graphs

val ue:

vi ds:

di rected:

danpi ng:

wei ght s:

options:

Returns:

Pointer to a real variable, the eigenvalue corresponding to the PageRank vector is
stored here. It should be always exactly one.

The vertex ids for which the PageRank is returned.

Boolean, whether to consider the directedness of the edges. Thisisignored for undi-
rected graphs.

The damping factor ("d" in the original paper). Must be a probability in the range [0,
1]. A commonly used valueis 0.85.

Optional edge weights. May beaNULL pointer, meaning unweighted edges, or avec-
tor of non-negative values of the same length as the number of edges.

Optionsfor the ARPACK method. Seei gr aph_ar pack_opti ons_t for details.
Note that the function overwrites the n (number of vertices), nev (1), ncv (3) and
whi ch (LM) parametersand it ways startsthe cal cul ation from anon-random vector
calculated based on the degree of the vertices.

Error code: | GRAPH_ENQOVEM not enough memory for temporary data. | GRAPH_EI NWWI D, in-
valid vertex idinvi ds.

Time complexity: depends on the input graph, usualy it is O(|E|), the number of edges.

See also:

i graph_personal i zed_pager ank() and i graph_personal i zed_pager -
ank_vs() for the personalized PageRank measure. See i gr aph_ar pack_r ssol ve() and
i graph_ar pack_rnsol ve() for the underlying machinery used by | GRAPH PAGER-
ANK_ALGO_ARPACK.

Example 13.14. Fileexanpl es/ si npl e/ i gr aph_pager ank. c

| graph_per sonal i zed_pager ank — Calculates the
personalized Google PageRank for the specified ver-

tices.

i nt igraph_personalized_pagerank(const igraph_t *graph,

i graph_pagerank_al go t al go, igraph vector_ t *
i graph_real t *value, const igraph_vs t vids,

i graph_bool t directed, igraph real t danping,
const igraph_vector_t *reset,

const igraph_vector_t *weights,

i graph_ar pack_options_t *options);

The personalized PageRank is similar to the original PageRank measure, but when the random walk
isrestarted, a new starting vertex is chosen non-uniformly, according to the distribution specified in
reset (instead of the uniform distribution in the original PageRank measure). Ther eset distribu-
tion is used both when restarting randomly with probability 1 - danpi ng, and when the walker is
forced to restart due to being stuck in asink vertex (a vertex with no outgoing edges).

Note that the personalized PageRank of a given vertex depends on the personalized PageRank of all
other vertices, so evenif youwant to cal cul ate the personalized PageRank for only someof thevertices,

329

Structural properties of graphs

all of them must be calculated. Requesting the personalized PageRank for only some of the vertices
does not result in any performance increase at all.

Arguments:

gr aph: The graph object.

al go: The PageRank implementation to use. Possible values. | GRAPH PAGERANK AL -
GO_ARPACK, | GRAPH_PAGERANK _ALGO_PRPACK.

vector: Pointer to an initialized vector, the result is stored here. It isresized as needed.

val ue: Pointer to a real variable, the eigenvalue corresponding to the PageRank vector is
stored here. It should be always exactly one.

vi ds: The vertex ids for which the PageRank is returned.

di rected: Boolean, whether to consider the directedness of the edges. Thisis ignored for undi-
rected graphs.

danpi ng: The damping factor ("d" in the original paper). Must be a probability in the range [0,
1]. A commonly used valueis 0.85.

reset: The probability distribution over the vertices used when resetting the random walk. It
iseither aNULL pointer (denoting a uniform choice that resultsin the original PageR-
ank measure) or avector of the same length as the number of vertices.

wei ght s: Optional edge weights. May beaNULL pointer, meaning unweighted edges, or avec-
tor of non-negative values of the same length as the number of edges.

options: Optionsfor the ARPACK method. Seei gr aph_ar pack_opti ons_t for details.
Note that the function overwrites the n (number of vertices), nev (1), ncv (3) and
whi ch (LM) parametersand it ways starts the cal cul ation from anon-random vector
calculated based on the degree of the vertices.

Returns:

Error code: | GRAPH_ENQOVEM not enough memory for temporary data. | GRAPH_EI NWWI D, in-
valid vertex idinvi ds or an invalid reset vector inr eset .

Time complexity: depends on the input graph, usually it is O(|E|), the number of edges.
See also:

i graph_pagerank() for the non-personalized implementation, i gr aph_per sonal -
i zed_pager ank_vs() for apersonalized implementation with resetting to specific vertices.

| graph_per sonal i zed_pager ank_vs — Calculates
the personalized Google PageRank for the specified
vertices.

i nt igraph_personalized_pagerank_vs(const igraph_t *graph,
i graph_pagerank_al go_t al go, igraph_vector |
i graph_real _t *value, const igraph_vs_ t vid:
i graph_bool _t directed, igraph_real t danpi!

330

Structural properties of graphs

i graph_vs_t reset_vids,
const igraph_vector_t *weights,
i graph_ar pack_options_t *options);

The personalized PageRank is similar to the original PageRank measure, but when the random walk
isrestarted, a new starting vertex is chosen according to a specified distribution. This distribution is
used both when restarting randomly with probability 1 - danpi ng, and when the walker is forced
to restart due to being stuck in asink vertex (a vertex with no outgoing edges).

This simplified interface takes a vertex sequence and resets the random walk to one of the vertices
in the specified vertex sequence, chosen uniformly. A typical application of personalized PageRank
is when the random walk is reset to the same vertex every time - this can easily be achieved using
i graph_vss_1() which generates a vertex sequence containing only asingle vertex.

Note that the personalized PageRank of a given vertex depends on the personalized PageRank of all
other vertices, so evenif youwant to cal cul ate the personalized PageRank for only someof thevertices,
all of them must be calculated. Reguesting the personalized PageRank for only some of the vertices
does not result in any performance increase at all.

Arguments:

gr aph: The graph object.

al go: The PageRank implementation to use. Possible values: | GRAPH PAGER-
ANK_ALGO_ARPACK, | GRAPH_PAGERANK_ALGO_PRPACK.

vector: Pointer to an initialized vector, the result is stored here. It isresized as needed.

val ue: Pointer to area variable, the eigenvalue corresponding to the PageRank vector is
stored here. It should be always exactly one.

vi ds: The vertex ids for which the PageRank is returned.

di r ect ed: Boolean, whether to consider the directedness of the edges. This is ignored for
undirected graphs.

danpi ng: The damping factor ("d" in the original paper). Must be a probability in the range

reset vids:

[0, 1]. A commonly used valueis 0.85.

IDs of the vertices used when resetting the random walk.

wei ght s: Optional edge weights, it is either anull pointer, then the edges are not weighted,
or avector of the same length as the number of edges.

options: Options for the ARPACK method. Seei gr aph_ar pack_opti ons_t for de-
tails. Note that the function overwrites the n (number of vertices), nev (1), ncv
(3) and whi ch (LM) parameters and it always starts the calculation from a non-
random vector calculated based on the degree of the vertices.

Returns:

Error code: | GRAPH_ENQVEM not enough memory for temporary data. | GRAPH_EI NVI D, in-
valid vertex idinvi ds or an empty reset vertex sequenceinvi ds_reset.

Time complexity: depends on the input graph, usualy it is O(|E|), the number of edges.

See also:

i graph_pager ank() for the non-personalized implementation.

331

Structural properties of graphs

| graph_constrai nt — Burt's constraint scores.

int igraph_constraint(const igraph_t *graph, igraph_vector t *res,
i graph_vs t vids, const igraph_vector_t *weights);
Thisfunction calculates Burt's constraint scores for the given vertices, also known as structural holes.

Burt's constraint is higher if ego hasless, or mutually stronger related (i.e. more redundant) contacts.
Burt's measure of constraint, C[i], of vertex i's ego network V[i], is defined for directed and valued

graphs,
C[i] = sum(sum((p[i,q] p[qj)"2, qinV[i], q!=ij),jinV[],j!=1)

for agraph of order (i.e. number of vertices) N, where proportional tie strengths are defined as
pli.j]=(ali.j]+alj.i]) / sum(ali k] +alk,i], k in V[i], k I=1),

a[i,j] areelementsof A and thelatter being the graph adjacency matrix. For isolated vertices, constraint
is undefined.

Burt, R.S. (2004). Structural holes and good ideas. American Journal of Sociology 110, 349-399.
Thefirst R version of this function was contributed by Jeroen Bruggeman.

Arguments:

graph: A graph object.

res: Pointer to an initialized vector, the result will be stored here. The vector will be resized
to have the appropriate size for holding the result.

vi ds: Vertex selector containing the vertices for which the constraint should be cal cul ated.
wei ght s: Vector giving theweights of the edges. If it isNULL then each edgeis supposed to have
the same weight.
Returns:
Error code.

Time complexity: O(|V[+E+n*d"2), nisthe number of vertices for which the constraint is calculated
and d isthe average degree, |V| is the number of vertices, |E| the number of edgesin the graph. If the
weights argument is NULL then the time complexity is O(|V|+n*d"2).

| gr aph_nmaxdegr ee — The maximum degree in a
graph (or set of vertices).

i nt igraph_maxdegree(const igraph_t *graph, igraph_integer_t *res,
i graph_vs_t vids, igraph_neinbode_t node,
i graph_bool _t 1 oops);

Thelargest in-, out- or total degree of the specified verticesis calculated. If the graph has no vertices,
orvi ds isempty, Oisreturned, asthisisthe smallest possible value for degrees.

332

Structural properties of graphs

Arguments:

graph: Theinput graph.

res: Pointer to an integer (i gr aph_i nt eger _t), the result will be stored here.

vi ds: Vector giving the vertex 1Ds for which the maximum degree will be cal culated.

node: Defines the type of the degree. | GRAPH_QUT, out-degree, | GRAPH I N, in-degree,
| GRAPH_ALL, total degree (sum of the in- and out-degree). This parameter isignored for
undirected graphs.

| oops: Boolean, giveswhether the self-loops should be counted.

Returns:
Error code: | GRAPH_EI NVVI D: invalid vertex id. | GRAPH_ElI NVMODE: invalid mode argument.

Time complexity: O(v) if loopsis TRUE, and O(v*d) otherwise. v isthe number of verticesfor which
the degree will be calculated, and d istheir (average) degree.

| graph_strengt h — Strength of the vertices, weight-
ed vertex degree in other words.

int igraph_strength(const igraph_t *graph, igraph_vector_t *res,
const igraph_vs_t vids, igraph_neinode_t node,
i graph_bool _t | oops, const igraph_vector_t *weights);

In aweighted network the strength of avertex isthe sum of theweights of al incident edges. In anon-
weighted network thisis exactly the vertex degree.

Arguments:

gr aph: The input graph.

res: Pointer to an initialized vector, the result is stored here. It will be resized as needed.
vi ds: The vertices for which the calculation is performed.
node: Giveswhether to count only outgoing (I GRAPH_QUT), incoming (I GRAPH | N) edges

or both (I GRAPH_ALL).

| oops: A logical scalar, whether to count loop edges as well.

wei ght s: A vector giving theedgeweights. If thisisaNULL pointer, theni gr aph_degr ee()
is called to perform the calculation.

Returns:

Error code.
Time complexity: O(|V|+|E]), linear in the number vertices and edges.
See also:

i graph_degr ee() for the traditional, non-weighted version.

333

Structural properties of graphs

| graph_ei genvector _central ity — Eigenvector
centrality of the vertices

int igraph_eigenvector _centrality(const igraph_t *graph,
i graph_vector_t *vector,
i graph_real _t *val ue,
i graph_bool _t directed, igraph_bool _t scale,
const igraph_vector_t *weights,
i graph_ar pack_options_t *options);

Eigenvector centrality isameasure of the importance of anodein anetwork. It assigns relative scores
to all nodesin the network based on the principle that connections from high-scoring nodes contribute
moreto the score of the node in question than equal connections from low-scoring nodes. Specifically,
the eigenvector centrality of each vertex is proportional to the sum of eigenvector centralities of its
neighbors. In practice, the centralities are determined by cal culating the eigenvector corresponding to
the largest positive eigenvalue of the adjacency matrix. In the undirected case, this function considers
the diagonal entries of the adjacency matrix to be twice the number of self-loops on the corresponding
vertex.

The centrality scoresreturned by igraph can be normalized (using the scal e parameter) such that the
largest eigenvector centrality score is 1 (with one exception, see below).

In the directed case, the left eigenvector of the adjacency matrix is calculated. In other words, the
centrality of avertex is proportional to the sum of centralities of vertices pointing to it.

Eigenvector centrality is meaningful only for connected graphs. Graphs that are not connected should
be decomposed into connected components, and the eigenvector centrality calculated for each sepa-
rately. Thisfunction does not verify that the graph is connected. If it is not, in the undirected case the
scores of all but one component will be zeros.

Also note that the adjacency matrix of a directed acyclic graph or the adjacency matrix of an empty
graph does not possess positive eigenvalues, therefore the eigenvector centrality is not defined for
these graphs. igraph will return an eigenvalue of zero in such cases. The eigenvector centralities will
all be equal for an empty graph and will all be zeros for a directed acyclic graph. Such pathological
cases can be detected by asking igraph to calculate the eigenvalue aswell (usingtheval ue parameter,
see below) and checking whether the eigenvalue is very close to zero.

Arguments:

graph: Theinput graph. It may be directed.

vector: Pointer to an initialized vector, it will be resized as needed. The result of the compu-
tation is stored here. It can be anull pointer, then it isignored.

val ue: If not a null pointer, then the eigenvalue corresponding to the found eigenvector is
stored here.

di rected: Boolean scaar, whether to consider edge directions in a directed graph. It isignored
for undirected graphs.

scal e: If not zero then the result will be scaled such that the absolute value of the maximum

centrality isone.

wei ght s: A null pointer (=no edge weights), or a vector giving the weights of the edges. The
algorithm might result complex numbers is some weights are negative. In this case
only thereal part is reported.

334

Structural properties of graphs

options: Options to ARPACK. Seei gr aph_ar pack_opti ons_t for details. Note that
the function overwrites the n (number of vertices) parameter and it aways starts the
calculation from a non-random vector calculated based on the degree of the vertices.
Returns:
Error code.
Time complexity: depends on the input graph, usually it is O(|V |+|E]).
See also:

i graph_pagerank andi graph_personal i zed_pager ank for modifications of eigen-
vector centrality.

Example 13.15. Fileexanpl es/ si npl e/ ei genvector _centrality.c

i graph_hub_score — Kleinberg's hub scores.

i nt igraph_hub _score(const igraph_t *graph, igraph _vector_t *vector,
i graph_real t *value, igraph_bool t scale,
const igraph_vector_t *weights,

i graph_ar pack_options_t *options);

The hub scores of the vertices are defined as the principal eigenvector of A* A*T, where A is the
adjacency matrix of the graph, A" T isits transposed.

See the following reference on the meaning of this score: J. Kleinberg. Authoritative sources in a
hyperlinked environment. Proc. 9th ACM-SAM Symposiumon Discrete Algorithms, 1998. Extended
versionin Journal of the ACM 46(1999). Also appearsas|BM Research Report RJ10076, May 1997.

Arguments:

graph: Theinput graph. Can be directed and undirected.

vector: Pointer to aninitialized vector, theresult isstored here. If anull pointer thenitisignored.

val ue: If not anull pointer then the eigenvalue corresponding to the calculated eigenvector is
stored here.

scal e: If not zero then the result will be scaled such that the absolute value of the maximum

centrality isone.
wei ght s: A null pointer (=no edge weights), or avector giving the weights of the edges.

options: Optionsto ARPACK. Seei graph_ar pack_opti ons_t for details. Note that the
function overwritesthe n (number of vertices) parameter and it aways starts the calcu-
|ation from a non-random vector calculated based on the degree of the vertices.
Returns:
Error code.

Time complexity: depends on the input graph, usually it is O(|V|), the number of vertices.

See also:

335

Structural properties of graphs

i graph_authority score() for the companion measure, igraph_pagerank(),
i graph_personal i zed_pager ank(), igraph_ei genvector_centrality() for
similar measures.

| graph_aut hority score — Kleinerg's authority
scores.

int igraph_authority score(const igraph_t *graph, igraph_vector t *vector,
i graph_real t *value, igraph_bool t scale,
const igraph_vector_t *weights,
i graph_ar pack_options_t *options);

The authority scores of the vertices are defined as the principal eigenvector of A*T* A, where Aisthe
adjacency matrix of the graph, A" T isits transposed.

See the following reference on the meaning of this score: J. Kleinberg. Authoritative sources in a
hyperlinked environment. Proc. 9th ACM-S AM Symposiumon Discrete Algorithms, 1998. Extended
versionin Journal of the ACM 46(1999). Also appearsas|BM Research Report RJ 10076, May 1997.

Arguments:

gr aph: Theinput graph. Can be directed and undirected.

vector: Pointer to aninitialized vector, theresultisstored here. If anull pointer thenitisignored.

val ue: If not anull pointer then the eigenval ue corresponding to the calculated eigenvector is
stored here.

scal e: If not zero then the result will be scaled such that the absolute value of the maximum

centrality isone.
wei ght s: A null pointer (=no edge weights), or avector giving the weights of the edges.
options: Optionsto ARPACK. Seei gr aph_ar pack_opti ons_t for details. Note that the
function overwritesthe n (number of vertices) parameter and it always starts the calcu-
lation from a non-random vector calculated based on the degree of the vertices.
Returns:
Error code.
Time complexity: depends on the input graph, usualy it is O(|V|), the number of vertices.
See also:
i graph_hub_score() forthecompanionmeasure,i gr aph_pager ank(),i gr aph_per -

sonal i zed_pager ank(), i graph_ei genvector_centrality() for similar mea
sures.

| graph_conver gence_degr ee — Calculates the con-
vergence degree of each edge in a graph.

336

Structural properties of graphs

i nt igraph_convergence_degree(const igraph_t *graph, igraph_vector_t *result,
i graph_vector_t *ins, igraph_vector_t *outs);

Let usdefinetheinput set of anedge (i, j) asthe set of verticeswhere the shortest paths passing through
(i, j) originate, and similarly, let us defined the output set of an edge (i, j) as the set of vertices where
the shortest paths passing through (i, j) terminate. The convergence degree of an edge is defined as
the normalized value of the difference between the size of the input set and the output set, i.e. the
difference of them divided by the sum of them. Convergence degreesareintherange (-1, 1); apositive
value indicates that the edge is convergent since the shortest paths passing through it originate from
alarger set and terminate in a smaller set, while a negative value indicates that the edge is divergent
since the paths originate from a small set and terminate in alarger set.

Note that the convergence degree as defined above does not make sense in undirected graphs as there
is no distinction between the input and output set. Therefore, for undirected graphs, the input and
output sets of an edge are determined by orienting the edge arbitrarily while keeping the remaining
edges undirected, and then taking the absolute value of the convergence degree.

Arguments:
gr aph: Theinput graph, it can be either directed or undirected.

resul t: Pointerto aninitialized vector; the convergence degrees of each edge will be stored here.
May be NULL if we are not interested in the exact convergence degrees.

ins: Pointer to an initialized vector; the size of the input set of each edge will be stored here.
May be NULL if we are not interested in the sizes of the input sets.

outs: Pointer to an initialized vector; the size of the output set of each edge will be stored here.
May be NULL if we are not interested in the sizes of the output sets.
Returns:
Error code.

Time complexity: O(|V||E|), the number of vertices times the number of edges.

Range-limited centrality measures

| graph_cl oseness_cut of f — Range limited close-
ness centrality.

i nt igraph_closeness_cutoff(const igraph_t *graph, igraph_vector_t *res,
i graph_vector _t *reachabl e _count, igraph_bool t *al
const igraph_vs_t vids, igraph_neinode t node,
const igraph_vector_t *weights,
i graph_bool t normalized,
i graph_real t cutoff);

Thisfunction computesarange-limited version of closeness centrality by considering only those short-
est paths whose length is no greater then the given cutoff value.

Arguments:

graph: The graph object.

337

Structural properties of graphs

res:

reachabl e_count:

al | _reachabl e:

vi ds:

node:

wei ght s:

nor mal i zed:

cut of f:

Returns:
Error code:
| GRAPH_ENOVEM
| GRAPH_EI NwWI D

I GRAPH_EI NVMODE

The result of the computation, a vector containing the range-limited close-
ness centrality scores for the given vertices.

If not NULL, thisvector will contain the number of verticesreachablewithin
the cutoff distance from each vertex for which the range-limited closeness
is calculated (not including that vertex).

Pointer to a Boolean. If not NULL, it indicates if all vertices of the graph
were reachable from each vertex in vi ds within the given cutoff distance.

The vertices for which the range limited closeness centrality will be com-
puted.

The type of shortest paths to be used for the calculation in directed graphs.
Possible values:

I GRAPH_QUT thelengths of the outgoing paths are calcul ated.
| GRAPH I N thelengths of the incoming paths are cal culated.

| GRAPH_ALL thedirected graph is considered as an undirected one for
the computation.

An optional vector containing edge weights for weighted closeness. No
edge weight may be NaN. Supply a null pointer here for traditional, un-
weighted closeness.

If true, the inverse of the mean distance to vertices reachable within the
cutoff isreturned. If false, the inverse of the sum of distancesis returned.

The maximal length of paths that will be considered. If negative, the exact
closeness will be calculated (no upper limit on path lengths).

not enough memory for temporary data.
invalid vertex id passed.

invalid mode argument.

Time complexity: O(n|E]), n is the number of vertices for which the calculation is done and |E| isthe
number of edgesin the graph.

See also:

i graph_cl oseness() to calculate the exact closeness centrality.

| graph_harnonic _centrality cutoff — Range
limited harmonic centrality.

int igraph_harnonic _centrality cutoff(const igraph_t *graph, igraph_vector t

*r'

const igraph_vs_ t vids, igraph_neinode t |

const igraph_vector_t *weights,

338

Structural properties of graphs

i graph_bool _t normalized,
i graph_real _t cutoff);

This function computes the range limited version of harmonic centrality: only those shortest paths are
considered whose length is not above the given cutoff. The inverse distance to vertices not reachable
within the cutoff is considered to be zero.

Arguments:
gr aph:

res:

vi ds:

node:

wei ght s:

nor mal i zed:

cut of f:

Returns:

Error code:

The graph object.

The result of the computation, a vector containing the range limited harmonic cen-
trality scores for the given vertices.

The vertices for which the harmonic centrality will be computed.

Thetype of shortest pathsto be used for the calculation in directed graphs. Possible
values:

I GRAPH_QUT thelengths of the outgoing paths are calculated.
| GRAPH I N thelengths of the incoming paths are cal culated.

| GRAPH_ALL thedirected graphisconsidered asan undirected one for the com-
putation.

An optional vector containing edge weights for weighted harmonic centrality. No
edge weight may be NaN. If NULL, all weights are considered to be one.

Boolean, whether to normalize the result. If true, the result isthe mean inverse path
length to other vertices. i.e. it is normalized by the number of vertices minus one.
If false, the result is the sum of inverse path lengths to other vertices.

The maximal length of paths that will be considered. The inverse distance to ver-
tices that are not reachable within the cutoff path length is considered to be zero.
Supply anegative value to compute the exact harmonic centrality, without any up-
per limit on the length of paths.

| GRAPH_ENQVEM not enough memory for temporary data.

| GRAPH EI NWI D invalid vertex id passed.

| GRAPH_EI NVMODE invalid mode argument.

Time complexity: O(n|E[), where n is the number of vertices for which the calculation is done and |
E| isthe number of edgesin the graph.

See also:

Other centrality types: i gr aph_cl oseness(),i graph_bet weenness().

| graph_bet weenness_cut of f — Range-limited be-
tweenness centrality.

339

Structural properties of graphs

i nt igraph_betweenness_cutoff(const igraph_t *graph, igraph_vector_t *res,
const igraph_vs_t vids, igraph_bool _t directed,
const igraph_vector_t *weights, igraph_real _t cut

This function computes a range-limited version of betweenness centrality by considering only those
shortest paths whose length is no greater then the given cutoff value.

Arguments:

gr aph: The graph object.

res: The result of the computation, a vector containing the range-limited betweenness
scores for the specified vertices.

vi ds: The vertices for which the range-limited betweenness centrality scores will be com-
puted.

directed: Logical, if true directed pathswill be considered for directed graphs. It isignored for
undirected graphs.

wei ght s: An optional vector containing edge weightsfor cal culating weighted betweenness. No

edge weight may be NaN. Supply anull pointer here for unweighted betweenness.
cut of f: The maximal length of paths that will be considered. If negative, the exact between-
nesswill be calculated, and there will be no upper limit on path lengths.
Returns:

Error code: | GRAPH_ENQVEM not enough memory for temporary data. | GRAPH_EI NVI D, in-
valid vertex id passed invi ds.

Time complexity: O(|V||E]), [V| and |E] are the number of vertices and edges in the graph. Note that
the time complexity is independent of the number of vertices for which the score is calcul ated.

See also:

i graph_bet weenness() to caculate the exact betweenness and i gr aph_edge_be-
t weenness_cut of f () to calculate the range-limited edge betweenness.

| gr aph_edge bet weenness_cut of f — Range-limit-
ed betweenness centrality of the edges.

i nt igraph_edge betweenness cutoff(const igraph_t *graph, igraph_vector_t *resu
i graph_bool t directed,
const igraph_vector_t *weights, igraph_real _

This function computes a range-limited version of edge betweenness centrality by considering only
those shortest paths whose length is no greater then the given cutoff value.

Arguments:
gr aph: The graph object.
result: Theresult of the computation, vector containing the betweenness scores for the edges.

340

Structural properties of graphs

directed: Logical, if truedirected pathswill be considered for directed graphs. It isignored for
undirected graphs.

wei ght s: An optional weight vector for weighted betweenness. No edge weight may be NaN.
Supply anull pointer here for unweighted betweenness.

cut of f: The maximal length of paths that will be considered. If negative, the exact between-
ness will be calculated (no upper limit on path lengths).
Returns:
Error code: | GRAPH _ENQVEM not enough memory for temporary data.
Time complexity: O(|V||E]), [V| and |E| are the number of vertices and edges in the graph.
See also:

i graph_edge_bet weenness() to compute the exact edge betweenness and i gr aph_be-
t weenness_cut of f () to compute the range-limited vertex betweenness.

Centralization

i graph_centralizati on — Calculate the centraliza-
tion score from the node level scores

i graph_real t igraph_centralization(const igraph_vector t *scores,
i graph_real t theoretical nax,
i graph_bool t normalized);

For acentrality score defined on the vertices of agraph, it ispossibleto defineagraph level centraliza-
tion index, by calculating the sum of the deviation from the maximum centrality score. Consequently,
the higher the centralization index of the graph, the more centralized the structure is.

In order to make graphs of different sizes comparable, the centralization index is usually normalized
to a number between zero and one, by dividing the (unnormalized) centralization score of the most
centralized structure with the same number of vertices.

For most centrality indices the most centralized structure is the star graph, a single center connected
to all other nodesin the network. There are some variation depending on whether the graph isdirected
or not, whether loop edges are allowed, etc.

This function simply calculates the graph level index, if the node level scores and the theoretical
maximum are given. It is called by all the measure-specific centralization functions.

Arguments:
scores: A vector containing the node-level centrality scores.

t heoreti cal _max: Thegraphlevel centrality score of the most centralized graph with the same
number of vertices. Only used if nor mal i zed set to true.

normal i zed: Boolean, whether to normalize the centralization by dividing the supplied
theoretical maximum.

341

Structural properties of graphs

Returns:

The graph level index.

See also:

i graph_centralization_degree(), i graph_centralization_between-
ness(), igraph_centralization_closeness(), and igraph_centraliza-
tion_eigenvector _centrality() for specific centralization functions.

Time complexity: O(n), the length of the score vector.

Example 13.16. Fileexanpl es/ si npl e/ central i zation.c

| graph_centralization_degree — Calculate vertex
degree and graph centralization

int igraph_centralization_degree(const igraph_t *graph, igraph_vector t *res,
i graph_nei node_t node, igraph_bool t |oops,
igraph _real t *centralization,
i graph_real t *theoretical nax,
i graph_bool t normalized);

This function calculates the degree of the vertices by passing itsargumentstoi gr aph_degree() ;
and it calculates the graph level centralization index based on the results by calling i gr aph_cen-
tralization().

Arguments:

gr aph: The input graph.

res: A vector if you need the node-level degree scores, or anull pointer other-
wise.

node: Constant the specifies the type of degree for directed graphs. Possible val-
ues: | GRAPH I N, | GRAPH _QUT and | GRAPH_ALL. This argument is
ignored for undirected graphs.

| oops: Boolean, whether to consider loop edges when cal culating the degree (and
the centralization).

centralization: Pointer to areal number, the centralization score is placed here.

t heoreti cal _max: Pointer to real number or anull pointer. If not anull pointer, then the theo-
retical maximum graph centrality score for a graph with the same number
verticesis stored here.

nor mal i zed: Boolean, whether to calculate a normalized centralization score. See
i graph_centralization() for how the normalization is done.

Returns:

Error code.

342

Structural properties of graphs

See also:
i graph_centralization(),igraph_degree().

Time complexity: the complexity of i gr aph_degr ee() plusO(n), the number of vertices queried,
for calculating the centralization score.

| graph_centralization_betweenness — Calculate
vertex betweenness and graph centralization

int igraph_centralization_betweenness(const igraph_t *graph,
i graph_vector_t *res,
i graph_bool _t directed,
i graph_real t *centralization,
i graph_real _t *theoretical _max,
i graph_bool _t normalized);

This function calculates the betweenness centrality of the vertices by passing its arguments to
i graph_bet weenness() ; and it calculates the graph level centralization index based on the re-
sultsby callingi graph_central i zation().

Arguments:

gr aph: The input graph.

res: A vector if you need the node-level betweenness scores, or a null pointer
otherwise.

di rect ed: Boolean, whether to consider directed paths when cal cul ating betweenness.

centralization: Pointer to areal number, the centralization score is placed here.

t heoreti cal _max: Pointerto real number or anull pointer. If not anull pointer, then the theo-
retical maximum graph centrality score for a graph with the same number
verticesis stored here.

normal i zed: Boolean, whether to calculate a normalized centralization score. See
i graph_centralization() for how the normalization is done.
Returns:

Error code.

See also:
i graph_centralization(),igraph_betweenness().

Time complexity: the complexity of i gr aph_bet weenness() plus O(n), the number of vertices
queried, for calculating the centralization score.

i graph_centralization_cl oseness — Calculate
vertex closeness and graph centralization

343

Structural properties of graphs

int igraph_centralization_cl oseness(const igraph_t *graph,

i graph_vector_t *res,

i graph_nei node_t node,

i graph_real t *centralization,
i graph_real _t *theoretical _max,
i graph_bool _t normalized);

This function calculates the closeness centrality of the vertices by passing its arguments to
i graph_cl oseness() ; andit calculates the graph level centralization index based on the results
by callingi graph_centralization().

Arguments:
gr aph:

res:

node:

centralization:

t heoreti cal _nax:

nor mal i zed:

Returns:

Error code.

See also:

Theinput graph.

A vector if you need the node-level closeness scores, or anull pointer oth-
erwise.

Constant the specifies the type of closeness for directed graphs. Possible
vaues: | GRAPH_I N, | GRAPH_OUT and | GRAPH_ALL. This argument
isignored for undirected graphs. Seei gr aph_cl oseness() argument
with the same name for more.

Pointer to areal number, the centralization score is placed here.
Pointer to real number or anull pointer. If not anull pointer, then the theo-
retical maximum graph centrality score for a graph with the same number

verticesis stored here.

Boolean, whether to calculate a normalized centralization score. See
i graph_centralization() for how the normalization is done.

i graph_centralization(),igraph_cl oseness().

Time complexity: the complexity of i gr aph_cl oseness() plus O(n), the number of vertices
queried, for calculating the centralization score.

| graph_centralization_ei genvector central -
| ty — Calculate eigenvector centrality scores and
graph centralization

int igraph_centralization_eigenvector _centrality(

const igraph_t

*gr aph,

i graph_vector t *vector,

i graph_real _t

*val ue,

i graph_bool t directed,
i graph_bool t scal e,
i graph_ar pack_options_t *options,

344

Structural properties of graphs

i graph_real _t
i graph_real _t
i graph_bool _t

*centralization,
*t heoretical _max,
nor mal i zed) ;

This function calculates the eigenvector centrality of the vertices by passing its arguments to
i graph_ei genvector_centrality); and it calculates the graph level centralization index
based on the results by callingi gr aph_central i zati on() .

Arguments:
graph:

vector:

val ue:

scal e:

options:

centralization:

t heoreti cal _nax:

nor mal i zed:

Returns:

Error code.

See also:

Theinput graph.

A vector if you need the node-level eigenvector centrality scores, or anull
pointer otherwise.

If not anull pointer, then the leading eigenvalue is stored here.

If not zero then the result will be scaled, such that the absolute value of the
maximum centrality is one.

Options to ARPACK. Seei graph_ar pack_options_t for details.
Note that the function overwrites the n (number of vertices) parameter and
it always starts the calculation from a non-random vector calculated based
on the degree of the vertices.

Pointer to areal number, the centralization score is placed here.
Pointer to real number or anull pointer. If not anull pointer, then the theo-
retical maximum graph centrality score for a graph with the same number

verticesis stored here.

Boolean, whether to calculate a normalized centralization score. See
i graph_centralization() for how the normalization is done.

i graph_centralization(),igraph_eigenvector _centrality().

Time complexity: the complexity of i gr aph_ei genvector _centrality() plus O(|V|), the
number of vertices for the calculating the centralization.

| graph_centralization_degree_t max — Theoreti-
cal maximum for graph centralization based on degree

int igraph_centralization_degree_ tmax(const igraph_t *graph,

i graph_i nteger_t nodes,
i graph_nei node_t node,
i graph_bool _t | oops,

i graph_real _t *res);

This function returns the theoretical maximum graph centrality based on vertex degree.

345

Structural properties of graphs

There are two ways to call this function, the first is to supply a graph as the gr aph argument, and
then the number of vertices is taken from this object, and its directedness is considered as well. The
nodes argument is ignored in this case. The nbde argument is also ignored if the supplied graph
is undirected.

The other way isto supply anull pointer asthe gr aph argument. In this case the nodes and node
arguments are considered.

The most centralized structure is the star. More specifically, for undirected graphs it is the star, for
directed graphsit isthe in-star or the out-star.

Arguments:
graph: A graph object or anull pointer, see the description above.
nodes: Thenumber of nodes. Thisisignored if the gr aph argument is not anull pointer.

node: Constant, whether the calculation is based on in-degree (I GRAPH_| N), out-degree
(I GRAPH_QUT) or total degree (I GRAPH_ALL). Thisisignored if the gr aph argument
isnot anull pointer and the given graph is undirected.

| oops: Boolean scalar, whether to consider loop edges in the calculation.

res: Pointer to areal variable, the result is stored here.

Returns:

Error code.
Time complexity: O(1).
See also:

i graph_centralization_degree() andi graph_centralization().

| graph_centralization_betweenness tnmax —
Theoretical maximum for graph centralization based
on betweenness

int igraph_centralization_betweenness_tnax(const igraph_t *graph,
i graph_i nteger _t nodes,
i graph_bool t directed,
i graph_real t *res);

This function returns the theoretical maximum graph centrality based on vertex betweenness.

There are two ways to call this function, the first is to supply a graph as the gr aph argument, and
then the number of vertices is taken from this object, and its directedness is considered as well. The
nodes argument isignored in this case. The di r ect ed argument is aso ignored if the supplied
graph is undirected.

The other way is to supply a null pointer as the gr aph argument. In this case the nodes and di -
r ect ed arguments are considered.

The most centralized structure is the star.

346

Structural properties of graphs

Arguments:
graph: A graph object or anull pointer, see the description above.
nodes: The number of nodes. Thisisignored if the gr aph argument is not a null pointer.

di rected: Boolean scalar, whether to use directed paths in the betweenness calculation. This
argument isignored if gr aph isnot anull pointer and it is undirected.

res: Pointer to areal variable, the result is stored here.

Returns:

Error code.
Time complexity: O(1).
See also:

i graph_centralizati on_betweenness() andi graph_centralization().

| graph_centralization_cl oseness_t max — The-
oretical maximum for graph centralization based on
closeness

int igraph_centralization_closeness_tmax(const igraph_t *graph,
i graph_i nteger _t nodes,
i graph_nei node_t node,
i graph_real _t *res);

This function returns the theoretical maximum graph centrality based on vertex closeness.

There are two ways to call this function, the first is to supply a graph as the gr aph argument, and
then the number of vertices is taken from this object, and its directedness is considered as well. The
nodes argument is ignored in this case. The node argument is also ignored if the supplied graph
is undirected.

The other way isto supply anull pointer asthe gr aph argument. In this case the nodes and node
arguments are considered.

The most centralized structure isthe star.

Arguments:

graph: A graph object or anull pointer, see the description above.

nodes: Thenumber of nodes. Thisisignored if the gr aph argument is not anull pointer.

node: Constant, specifieswhat kinf of distancesto consider to calculate closeness. Seethenode
argument of i gr aph_cl oseness() for details. Thisargument isignored if gr aph is
not anull pointer and it is undirected.

res: Pointer to areal variable, the result is stored here.

Returns:

347

Structural properties of graphs

Error code.
Time complexity: O(1).
See also:

i graph_centralization_closeness() andi graph_centralization().

| graph_centralization_ei genvector central -
| ty tmax — Theoretical maximum centralization for
eigenvector centrality

int igraph_centralization_eigenvector centrality_ tmax(
const igraph_t *graph,
i graph_i nteger _t nodes,
i graph_bool t directed,
i graph_bool t scal e,
i graph_real t *res);

Thisfunction returns the theoretical maximum graph centrality based on vertex eigenvector centrality.

There are two ways to call this function, the first is to supply a graph as the gr aph argument, and
then the number of vertices is taken from this object, and its directedness is considered as well. The
nodes argument is ignored in this case. The di r ect ed argument is also ignored if the supplied
graph is undirected.

The other way is to supply a null pointer as the gr aph argument. In this case the nodes and di -
r ect ed arguments are considered.

The most centralized directed structure is the in-star. The most centralized undirected structure is the

graph with asingle edge.

Arguments:

gr aph: A graph object or anull pointer, see the description above.

nodes: The number of nodes. Thisisignored if thegr aph argument is not anull pointer.

directed: Boolean scalar, whether to consider edge directions. This argument is ignored if
gr aph isnot anull pointer and it is undirected.

scal e: Whether to rescale the node-level centrality scores to have a maximum of one.
res: Pointer to areal variable, the result is stored here.
Returns:

Error code.

Time complexity: O(1).
See also:

i graph_centralization_cl oseness() andi graph_centralization().

Structural properties of graphs

Similarity measures
| graph_bi bcoupl i ng — Bibliographic coupling.

i nt igraph_bi bcoupling(const igraph_t *graph, igraph_matrix_t *res,
const igraph_vs_t vids);

The bibliographic coupling of two vertices is the number of other vertices they both cite,
i gr aph_bi bcoupl i ng() calculates this. The bibliographic coupling score for each given vertex
and al other verticesin the graph will be calculated.

Arguments:
graph: The graph object to analyze.

res: Pointer to amatrix, the result of the calculation will be stored here. The number of itsrows
is the same as the number of vertex idsin vi ds, the number of columns is the number
of verticesin the graph.

vi ds: The vertex ids of the vertices for which the calculation will be done.

Returns:
Error code: | GRAPH_EI NwVI D: invalid vertex id.

Time complexity: O(|V|d"2), |V| is the number of vertices in the graph, d is the (maximum) degree
of the vertices in the graph.

See also:

i graph_cocitation()

Example 13.17. Fileexanpl es/ si npl e/ i graph_cocitation.c

| graph_coci tati on— Cocitation coupling.

int igraph_cocitation(const igraph_t *graph, igraph_matrix_t *res,
const igraph_vs_t vids);

Two vertices are cocited if there is another vertex citing both of them. i gr aph_coci tati on()
simply counts how many times two vertices are cocited. The cocitation score for each given vertex
and all other verticesin the graph will be calculated.

Arguments:
graph: The graph object to analyze.

res: Pointer to amatrix, the result of the calculation will be stored here. The number of itsrows
is the same as the number of vertex ids in vi ds, the number of columns is the number
of verticesin the graph.

vi ds: The vertex ids of the vertices for which the calcul ation will be done.

349

Structural properties of graphs

Returns:
Error code: | GRAPH_EI NwVI D: invalid vertex id.

Time complexity: O(|V|d"*2), |V| is the number of vertices in the graph, d is the (maximum) degree
of the vertices in the graph.

See also:

i graph_bi bcoupl i ng()

Example 13.18. Fileexanpl es/ si npl e/ i graph_cocitation.c

i graph_simlarity jaccard— Jaccard similarity
coefficient for the given vertices.

int igraph_simlarity_jaccard(const igraph_t *graph, igraph_matrix_t *res,
const igraph_vs_ t vids, igraph_neinode_t node, ig

The Jaccard similarity coefficient of two verticesis the number of common neighbors divided by the
number of verticesthat are neighbors of at |east one of the two vertices being considered. Thisfunction
calculates the pairwise Jaccard similarities for some (or al) of the vertices.

Arguments:
graph: The graph object to analyze

res: Pointer to amatrix, the result of the calculation will be stored here. The number of itsrows
and columns is the same as the number of vertex idsinvi ds.

vi ds: The vertex ids of the vertices for which the calculation will be done.
node: The type of neighbors to be used for the calculation in directed graphs. Possible values:
| GRAPH_QUT the outgoing edges will be considered for each node.
I GRAPH I N theincoming edges will be considered for each node.
| GRAPH_ALL thedirected graphisconsidered asan undirected onefor the computation.

| oops: Whether to include the vertices themselves in the neighbor sets.

Returns:
Error code:
| GRAPH_ENQOVEM not enough memory for temporary data.
| GRAPH_EI NWI D invalid vertex id passed.
| GRAPH_EI NVMODE invalid mode argument.

Time complexity: O(|V|*2 d), [V| is the number of verticesin the vertex iterator given, d is the (max-
imum) degree of the verticesin the graph.

See also:

350

Structural properties of graphs

igraph_simlarity_dice(),ameasurevery similar to the Jaccard coefficient

Example 13.19. Fileexanpl es/ si nple/igraph_simlarity.c

i graph_simlarity jaccard pairs — Jaccard
similarity coefficient for given vertex pairs.

int igraph_sinilarity jaccard pairs(const igraph_t *graph, igraph_vector_t *res
const igraph_vector_t *pairs, igraph_nei nod

The Jaccard similarity coefficient of two verticesis the number of common neighbors divided by the
number of verticesthat are neighbors of at least one of the two vertices being considered. Thisfunction
calculates the pairwise Jaccard similarities for alist of vertex pairs.

Arguments:
graph: Thegraph object to analyze

res: Pointer to avector, the result of the calculation will be stored here. The number of e ements
isthe same as the number of pairsin pai r s.

pairs: A vector that contains the pairs for which the similarity will be calculated. Each pair is
defined by two consecutive elements, i.e. the first and second element of the vector spec-
ifiesthe first pair, the third and fourth element specifies the second pair and so on.

node: The type of neighbors to be used for the calculation in directed graphs. Possible values:
I GRAPH_QUT the outgoing edges will be considered for each node.
I GRAPH I N theincoming edges will be considered for each node.
| GRAPH_ALL thedirected graphisconsidered asan undirected onefor the computation.

| oops: Whether to include the vertices themselves in the neighbor sets.

Returns:
Error code:
| GRAPH_ENQOVEM not enough memory for temporary data.
| GRAPH _EI NWI D invalid vertex id passed.
| GRAPH_EI NVMODE invalid mode argument.

Time complexity: O(nd), n is the number of pairsin the given vector, d is the (maximum) degree of
the vertices in the graph.

See also:
igraph_simlarity jaccard() to caculae the Jaccard similarity between al

pairs of a vertex set, or igraph simlarity dice() and igraph_simlari-
ty_di ce_pairs() for ameasurevery similar to the Jaccard coefficient

Example 13.20. Fileexanpl es/ sinple/igraph_simlarity.c

351

Structural properties of graphs

i graph_simlarity jaccard _es — Jaccard similar-
ity coefficient for a given edge selector.

int igraph_sinmlarity jaccard_es(const igraph_t *graph, igraph_vector_t *res,
const igraph_es_t es, igraph_neinode_t node,

The Jaccard similarity coefficient of two vertices is the number of common neighbors divided by the
number of verticesthat are neighbors of at |east one of the two vertices being considered. Thisfunction
calculates the pairwise Jaccard similarities for the endpoints of edgesin a given edge selector.

Arguments:
graph: The graph object to analyze

res: Pointer to avector, the result of the calculation will be stored here. The number of elements
isthe same as the number of edgesines.

es: An edge selector that specifies the edgesto be included in the result.
node: The type of neighbors to be used for the calculation in directed graphs. Possible values:
| GRAPH_QUT the outgoing edges will be considered for each node.
| GRAPH I N theincoming edges will be considered for each node.
| GRAPH_ALL thedirected graphisconsidered asan undirected onefor the computation.

| oops: Whether to include the vertices themselves in the neighbor sets.

Returns:
Error code:
| GRAPH_ENOVEM not enough memory for temporary data.
| GRAPH_EI NwWI D invalid vertex id passed.
| GRAPH_EI NVMODE invalid mode argument.

Time complexity: O(nd), n is the number of edges in the edge selector, d is the (maximum) degree
of the vertices in the graph.

See also:
igraph_simlarity jaccard() andigraph_simlarity jaccard pairs() to
calculate the Jaccard similarity between all pairs of a vertex set or some selected vertex

pairs, or i graph_simlarity_dice(), igraph_simlarity_dice_pairs() and
igraph_simlarity dice _es() forameasurevery similar to the Jaccard coefficient

Example 13.21. Fileexanpl es/sinpl e/igraph_simlarity.c

| graph_siml arity_di ce — Dice similarity coeffi-
cient.

352

Structural properties of graphs

int igraph_simlarity_dice(const igraph_t *graph, igraph_matrix_t *res,
const igraph_vs_t vids, igraph_neinode_t node, igrap

The Dice similarity coefficient of two vertices is twice the number of common neighbors divided by
the sum of the degrees of the vertices. This function calculates the pairwise Dice similarities for some
(or al) of the vertices.

Arguments:
graph: Thegraph object to analyze

res: Pointer to amatrix, the result of the calculation will be stored here. The number of itsrows
and columns is the same as the number of vertex idsinvi ds.

vi ds: The vertex ids of the vertices for which the calculation will be done.
node: The type of neighbors to be used for the calculation in directed graphs. Possible values:
| GRAPH_QUT the outgoing edges will be considered for each node.
| GRAPH_I N theincoming edges will be considered for each node.
| GRAPH_ALL thedirected graph isconsidered asan undirected onefor the computation.

| oops: Whether to include the vertices themselves as their own neighbors.

Returns:
Error code:
| GRAPH_ENOVEM not enough memory for temporary data.
| GRAPH_EI NwWI D invalid vertex id passed.
| GRAPH_EI NVMODE invalid mode argument.

Time complexity: O(|V|*2 d), |V| isthe number of verticesin the vertex iterator given, d is the (max-
imum) degree of the verticesin the graph.

See also:

igraph_simlarity_jaccard(),ameasurevery similar to the Dice coefficient

Example 13.22. Fileexanpl es/sinple/igraph_simlarity.c

i graph_simlarity dice pairs — Dice similarity
coefficient for given vertex pairs.

int igraph_simlarity_dice_pairs(const igraph_t *graph, igraph_vector_t *res,
const igraph_vector_t *pairs, igraph_neinode_t

The Dice similarity coefficient of two vertices is twice the number of common neighbors divided by
the sum of the degrees of the vertices. This function calculates the pairwise Dice similarities for a
list of vertex pairs.

353

Structural properties of graphs

Arguments:
graph: The graph object to analyze

res: Pointer to avector, the result of the calculation will be stored here. The number of elements
isthe same as the number of pairsin pai rs.

pai rs: A vector that contains the pairs for which the similarity will be calculated. Each pair is
defined by two consecutive elements, i.e. the first and second element of the vector spec-
ifiesthe first pair, the third and fourth element specifies the second pair and so on.

node: The type of neighbors to be used for the calculation in directed graphs. Possible values:
| GRAPH_QUT the outgoing edges will be considered for each node.
I GRAPH I N theincoming edges will be considered for each node.
| GRAPH_ALL thedirected graphisconsidered asan undirected onefor the computation.

| oops: Whether to include the vertices themselves as their own neighbors.

Returns:
Error code:
| GRAPH_ENOQVEM not enough memory for temporary data.
| GRAPH_EI NwWI D invalid vertex id passed.
| GRAPH_EI NVMODE invalid mode argument.

Time complexity: O(nd), n is the number of pairsin the given vector, d is the (maximum) degree of
the verticesin the graph.

See also:
i graph_sinmilarity_dice() to caculate the Dice similarity between al pairs of a vertex

set,origraph_simlarity jaccard(),igraph_simlarity jaccard_pairs()
andi graph_sinilarity_jaccard_es() forameasurevery similar to the Dice coefficient

Example 13.23. Fileexanpl es/sinple/igraph_simlarity.c

i graph_simlarity di ce _es — Dice similarity coef-
ficient for a given edge selector.

int igraph_sinmlarity dice_es(const igraph_t *graph, igraph_vector t *res,
const igraph_es t es, igraph_neinobde_t node, igra

The Dice similarity coefficient of two vertices is twice the number of common neighbors divided by
the sum of the degrees of the vertices. This function calculates the pairwise Dice similarities for the
endpoints of edgesin a given edge selector.

Arguments:

graph: The graph object to analyze

354

Structural properties of graphs

res: Pointer to avector, the result of the calculation will be stored here. The number of el ements
is the same as the number of edgesines.

es: An edge selector that specifies the edgesto be included in the result.
node: The type of neighbors to be used for the calculation in directed graphs. Possible values:
| GRAPH_QUT the outgoing edges will be considered for each node.
| GRAPH_I N theincoming edges will be considered for each node.
| GRAPH_ALL thedirected graphisconsidered asan undirected onefor the computation.

| oops: Whether to include the vertices themselves as their own neighbors.

Returns:
Error code:
| GRAPH_ENOVEM not enough memory for temporary data.
| GRAPH_EI NwWI D invalid vertex id passed.
| GRAPH_EI NVMODE invalid mode argument.

Time complexity: O(nd), n is the number of pairsin the given vector, d is the (maximum) degree of
the verticesin the graph.

See also:

igraph_simlarity dice() andigraph_simlarity_di ce_pairs() tocaculate
the Dicesimilarity between all pairsof avertex set or some selected vertex pairs, ori gr aph_si m
ilarity jaccard(),igraph simlarity jaccard pairs() andigraph_sim
ilarity jaccard_es() for ameasurevery similar to the Dice coefficient

Example 13.24. Fileexanpl es/ sinple/igraph_simlarity.c

i graph_simlarity inverse | og weighted—
Vertex similarity based on the inverse logarithm of
vertex degrees.

int igraph_simlarity_inverse_|l og_weighted(const igraph_t *graph,
igraph_matrix_ t *res, const igraph_vs_ t vids, igraph_neinode_ t node);

Theinverselog-weighted similarity of two verticesisthe number of their common neighbors, weighted
by the inverse logarithm of their degrees. It is based on the assumption that two vertices should be
considered more similar if they share a low-degree common neighbor, since high-degree common
neighbors are more likely to appear even by pure chance.

Isolated vertices will have zero similarity to any other vertex. Self-similarities are not cal cul ated.

See the following paper for more details: Lada A. Adamic and Eytan Adar: Friends and neighbors on
the Web. Social Networks, 25(3):211-230, 2003.

Arguments:

355

Structural properties of graphs

graph: The graph object to analyze.

res: Pointer to amatrix, the result of the calculation will be stored here. The number of itsrows
is the same as the number of vertex ids in vi ds, the number of columns is the number
of verticesin the graph.

vi ds: The vertex ids of the vertices for which the calculation will be done.
node: The type of neighbors to be used for the calculation in directed graphs. Possible values:

| GRAPH_QOUT the outgoing edges will be considered for each node. Nodes will be
weighted according to their in-degree.

| GRAPH_I N the incoming edges will be considered for each node. Nodes will be
weighted according to their out-degree.

| GRAPH_ALL thedirected graphisconsidered asan undirected onefor the computation.
Every node is weighted according to its undirected degree.
Returns:
Error code: | GRAPH_EI NwVI D: invalid vertex id.

Time complexity: O(|V|d"*2), |V| is the number of vertices in the graph, d is the (maximum) degree
of the vertices in the graph.

Example 13.25. Fileexanpl es/sinple/igraph_simlarity.c

Trees

i graph_m ni mrum spanni ng_tree — Calculates one
minimum spanning tree of a graph.

int igraph_m ni mum spanni ng_tree(const igraph_t* graph,
i graph_vector_t* res, const igraph_vector_t* w

If the graph has more minimum spanning trees (this is always the case, except if it is a forest) this
implementation returns only the same one.
Directed graphs are considered as undirected for this computation.

If the graph is not connected then its minimum spanning forest is returned. This is the set of the
minimum spanning trees of each component.

Arguments:
graph: The graph object.

res: Aninitialized vector, the | Ds of the edgesthat constitute aspanning treewill bereturned
here. Usei gr aph_subgr aph_edges() to extract the spanning tree as a separate
graph object.

wei ght's: A vector containing theweights of the edgesin the same order asthe simple edgeiterator
visitsthem (i.e. in increasing order of edge IDs).

356

Structural properties of graphs

Returns:
Error code: | GRAPH_ENQOVEM not enough memory for temporary data.

Time complexity: O(|V[+|E]) for the unweighted case, O(|E| log |V|) for the weighted case. V| isthe
number of vertices, |E| the number of edgesin the graph.

See also:

i graph_m ni nrum spanni ng_tree_unwei ghted() and i graph_m ni nrum span-
ni ng_tree_prim) if youonly need the tree as a separate graph object.

Example 13.26. File exanpl es/ si npl e/
i graph_m ni nrum spanni ng_tree.c

| graph_m ni rum spanni ng_tree_unwei ght ed
— Calculates one minimum spanning tree of an un-
weighted graph.

i nt igraph_m ni num spanni ng_tree_unwei ght ed(const igraph_t *graph,
i graph_t *nst);

If the graph has more minimum spanning trees (this is always the case, except if it is a forest) this
implementation returns only the same one.
Directed graphs are considered as undirected for this computation.

If the graph is not connected then its minimum spanning forest is returned. This is the set of the
minimum spanning trees of each component.

Arguments:

graph: The graph object.

nst : The minimum spanning tree, another graph object. Do not initialize this object before pass-
ing it to this function, but be sureto cal i gr aph_dest roy() onit if you don't need
it any more.

Returns:

Error code: | GRAPH_ENQVEM not enough memory for temporary data.
Time complexity: O(|V|+|E]), [V| is the number of vertices, |E| the number of edgesin the graph.
See also:

i graph_m ni num spanni ng_tree_prin() for weighted graphs, igraph_nmnini -
mum spanni ng_t ree() if you need the IDs of the edges that constitute the spanning tree.

i graph_m ni rum spanni ng_tree_pri m— Calcu-
lates one minimum spanning tree of a weighted graph.

357

Structural properties of graphs

i nt igraph_m ni num spanning_tree_prin{const igraph_t *graph, igraph_t *mst,
const igraph_vector_t *weights);

Thisfunction uses Prim'smethod for carrying out the computation, see Prim, R.C.: Shortest connection
networks and some generalizations, Bell System Technical Journal, Vol. 36, 1957, 1389--1401.

If the graph has more than one minimum spanning tree, the current implementation returns always
the same one.

Directed graphs are considered as undirected for this computation.

If the graph is not connected then its minimum spanning forest is returned. This is the set of the
minimum spanning trees of each component.

Arguments:
gr aph: The graph object.
nst : The result of the computation, a graph object containing the minimum spanning tree of

the graph. Do not initialize this object before passing it to this function, but be sure to
call i graph_destroy() onitif youdon't need it any more.

wei ght s: A vector containing theweights of the edgesin the same order asthe simple edgeiterator
visitsthem (i.e. in increasing order of edge IDs).
Returns:

Error code: | GRAPH_ENOVEM not enough memory. | GRAPH_EI NVAL, length of weight vector
does not match number of edges.

Time complexity: O(|E| log |V|), [V| is the number of vertices, |E| the number of edgesin the graph.

See also:
i graph_m ni mum spanni ng_tree_unwei ght ed() for unweighted graphs,
i graph_m ni num spanni ng_t ree() if you need the IDs of the edges that constitute the
spanning tree.

Example 13.27. File exanpl es/ si npl e/

i graph_m ni nrum spanni ng_tree.c

i graph_random spanni ng_t ree — Uniformly sam-
ple the spanning trees of a graph

i nt igraph_random spanning_tree(const igraph_t *graph, igraph_vector_t *res, ig

Performs aloop-erased random walk on the graph to uniformly sampleits spanning trees. Edge direc-
tions are ignored.

Multi-graphs are supported, and edge multiplicities will affect the sampling frequency. For example,
consider the 3-cycle graph 1=2- 3- 1, with two edges between vertices 1 and 2. Due to these parallel
edges, the trees 1- 2- 3 and 3- 1- 2 will be sampled with multiplicity 2, while the tree 2- 3- 1 will
be sampled with multiplicity 1.

358

Structural properties of graphs

Arguments:

graph: Theinput graph. Edge directions are ignored.

res: An initialized vector, the IDs of the edges that constitute a spanning tree will be returned
here. Use i gr aph_subgr aph_edges() to extract the spanning tree as a separate
graph object.

vi d: This parameter is relevant if the graph is not connected. If negative, a random spanning

forest of al components will be generated. Otherwise, it should be the ID of avertex. A
random spanning tree of the component containing the vertex will be generated.
Returns:

Error code.

See also:

i graph_m ni num spanni ng_tree(),igraph_random wal k()

| graph_i s _tree — Decides whether the graph is a
tree.

int igraph_is_tree(const igraph_t *graph, igraph_bool t *res, igraph_integer t
Anundirected graph isatreeif it is connected and has no cycles.

In the directed case, a possible additional requirement is that all edges are oriented away from aroot
(out-tree or arborescence) or all edges are oriented towards aroot (in-tree or anti-arborescence). This
test can be controlled using the node parameter.

By convention, the null graph (i.e. the graph with no vertices) is considered not to be atree.
Arguments:

graph: The graph object to analyze.

res: Pointer to alogical variable, the result will be stored here.

root: If not NULL, the root node will be stored here. When node is| GRAPH_ALL or the graph
is undirected, any vertex can be the root and r oot is set to O (the first vertex). When
nmode is| GRAPH_QUT or | GRAPH | N, theroot is set to the vertex with zero in- or out-
degree, respectively.

node: For a directed graph this specifies whether to test for an out-tree, an in-tree or ig-
nore edge directions. The respective possible values are: | GRAPH_QUT, | GRAPH I N,
| GRAPH_ALL. Thisargument isignored for undirected graphs.
Returns:
Error code: | GRAPH_EI NVAL: invalid mode argument.
Time complexity: At most O(|V|+|E]), the number of vertices plus the number of edgesin the graph.

See also:

359

Structural properties of graphs

igraph_is weakly_connected()

Example 13.28. Fileexanpl es/ si npl e/ i graph_tree.c

| graph_to_prufer — Converts atree to its Prufer se-
quence

int igraph_to_prufer(const igraph_t *graph, igraph_vector_int_t* prufer);

A Priifer sequence is a unigque sequence of integers associated with alabelled tree. A treeonn >=2
vertices can be represented by a sequence of n-2 integers, each between 0 and n-1 (inclusive).

Arguments:
graph: Pointer to an initialized graph object which must be atree on n >= 2 vertices.
prufer: A pointer to the integer vector that should hold the Prifer sequence; the vector must be
initialized and will beresizedton - 2.
Returns:
Error code:
| GRAPH_ENOVEM there is not enough memory to perform the operation.

| GRAPH_EI NVAL thegraphisnot atreeor it is hasless than vertices

See also:

i graph_from prufer()

Transitivity or clustering coefficient

i graph_transitivity undirected— Calculates
the transitivity (clustering coefficient) of a graph.

int igraph_transitivity_undirected(const igraph_t *graph,
i graph_real _t *res,
igraph_transitivity _node_t node);

Thetransitivity measures the probability that two neighbors of avertex are connected. More precisely,
thisis the ratio of the triangles and connected triples in the graph, the result is a single real number.
Directed graphs are considered as undirected ones and multi-edges are ignored.

Note that this measure is different from the local transitivity measure (seei gr aph_transi ti vi -
ty local _undirected())asitcaculatesasinglevaue for the whole graph.

Clustering coefficient is an aternative name for transitivity.

References:

360

Structural properties of graphs

S. Wasserman and K. Faust: Social Network Analysis: Methods and Applications. Cambridge: Cam-
bridge University Press, 1994.

Arguments:

graph: The graph object. Edge directions and multiplicites are ignored.

res: Pointer to areal variable, the result will be stored here.

node: Defines how to treat graphs with no connected triples. | GRAPH_TRANSI Tl VI TY_NAN
returns NaNin this case, | GRAPH_TRANSI TI VI TY_ZEROreturns zero.

Returns:

Error code: | GRAPH_ENQOVEM not enough memory for temporary data.

See also:

igraph_transitivity_ |ocal _undirected(), igraph_transitivity_avgl o-
cal _undirected().

Time complexity: O(|V [*d"2), |V|isthe number of verticesin the graph, d isthe average node degree.

Example 13.29. Fileexanpl es/ sinpl e/igraph_transitivity.c

i graph_transitivity | ocal undirected— Cal-
culates the local transitivity (clustering coefficient) of
agraph.

int igraph_transitivity | ocal undirected(const igraph_t *graph,
i graph_vector t *res,
const igraph_vs_ t vids,
igraph_transitivity node_t node);

The transitivity measures the probability that two neighbors of a vertex are connected. In case of the
local transitivity, this probability is calculated separately for each vertex.

Note that this measure is different from the global transitivity measure (seei gr aph_transiti v-
ity _undirected())asitcaculatesatransitivity value for each vertex individualy.

Clustering coefficient is an aternative name for transitivity.
References:

D.J Wattsand S. Strogatz: Collective dynamics of small-world networks. Nature 393(6684):440-442
(1998).

Arguments:
graph: Theinput graph. Edge directions and multiplicities are ignored.
res: Pointer to an initialized vector, the result will be stored here. It will be resized as needed.

vi ds: Vertex set, the vertices for which the local transitivity will be cal culated.

361

Structural properties of graphs

node: Defines how to treat verticeswith degree lessthan two. | GRAPH_TRANSI Tl VI TY_NAN
returns NaN for these vertices, | GRAPH_TRANSI Tl VI TY_ZEROreturns zero.
Returns:

Error code.

See also:

igraph_transitivity undirected(), igraph_transitivity avgl o-
cal _undirected().

Time complexity: O(n*d*2), n is the number of vertices for which the transitivity is calculated, d is
the average vertex degree.

i graph_transitivity_avglocal undirected —
Average local transitivity (clustering coefficient).

int igraph_transitivity_avglocal _undirected(const igraph_t *graph,
i graph_real _t *res,
igraph_transitivity _node_t node);

The transitivity measures the probability that two neighbors of a vertex are connected. In case of the
average local transitivity, this probability is calculated for each vertex and then the average is taken.
Vertices with less than two neighbors require specia treatment, they will either be left out from the
calculation or they will be considered as having zero transitivity, depending on the node argument.
Edge directions and edge multiplicities are ignored.

Note that this measure is different from the global transitivity measure (seei gr aph_transi ti v-
ity _undirected())asitsimply takesthe average local transitivity across the whole network.

Clustering coefficient is an aternative name for transitivity.
References:

D. J. Wattsand S. Strogatz: Collective dynamics of small-world networks. Nature 393(6684):440-442
(1998).

Arguments:
graph: Theinput graph. Edge directions and multiplicites are ignored.
res: Pointer to areal variable, the result will be stored here.

node: Defineshow to treat verticeswith degreelessthan two. | GRAPH_TRANSI TI VI TY_NAN
|leaves them out from averaging, | GRAPH_TRANSI Tl VI TY_ZERO includes them with
zero trangitivity. The result will be NaNif the modeis| GRAPH_TRANSI Tl VI TY_NAN
and there are no vertices with more than one neighbor.

Returns:

Error code.

See also:

362

Structural properties of graphs

igraph_transitivity_undirected(), igraph_transitivity_local_undi-
rected().

Time complexity: O(|V[*d"2), |V| isthe number of verticesin the graph and d is the average degree.

i graph_transitivity barrat — Weighted transi-
tivity, as defined by A. Barrat.

int igraph_transitivity_barrat(const igraph_t *graph,
i graph_vector _t *res,
const igraph_vs_t vids,
const igraph_vector_t *weights,
igraph_transitivity node_t node);

Thisisalocal trangitivity, i.e. a vertex-level index. For agiven vertex i , from all triangles in which
it participates we consider the weight of the edgesincident on i . The transitivity is the sum of these
weights divided by twice the strength of the vertex (seei gr aph_strengt h()) and the degree
of the vertex minus one. See Alain Barrat, Marc Barthelemy, Romualdo Pastor-Satorras, Alessandro
Vespignani: The architecture of complex weighted networks, Proc. Natl. Acad. Sci. USA 101, 3747
(2004) at http://arxiv.org/abs/cond-mat/0311416 for the exact formula.

Arguments:

gr aph: Theinput graph. Edge directions are ignored for directed graphs. Note that the function
does not work for non-simple graphs.

res: Pointer to aninitialized vector, theresult will be stored here. It will beresized asneeded.

vi ds: The vertices for which the calculation is performed.

wei ght s: Edgeweights. If thisisanull pointer, then awarningisgivenandi gr aph_t r ansi -
tivity_local _undirected() iscaled.

node: Defineshow totreat verticeswith zero strength. | GRAPH_TRANSI T1 VI TY_NANsays
that the transitivity of these verticesis NaN, | GRAPH_TRANSI TI VI TY_ZERO says
itiszero.
Returns:
Error code.

Time complexity: O(|V [*d"2), |V|isthe number of verticesin the graph, d isthe average node degree.
See also:
igraph_transitivity_undirected(), igraph_transitivity_|local_undi-

rected() andigraph_transitivity avgl ocal undirected() for other kinds of
(non-weighted) transitivity.

Directedness conversion

| graph_to_directed— Convert an undirected graph
to a directed one

363

http://arxiv.org/abs/cond-mat/0311416

Structural properties of graphs

int igraph_to_directed(igraph_t *graph,
i graph_to_directed_t node);
If the supplied graph is directed, this function does nothing.
Arguments:
graph: The graph object to convert.
node: Constant, specifies the details of how exactly the conversion is done. Possible values:
| GRAPH _TO DI RECTED _ARBI - The number of edges in the graph stays the same,
TRARY an arbitrarily directed edgeis created for each undi-
rected edge.

| GRAPH_TO DI RECTED MJUTU- Two directed edges are created for each undirected
AL edge, onein each direction.

| GRAPH _TO DI RECTED RAN- Each undirected edge is converted to a randomly
DOV oriented directed one.

| GRAPH_TO DI RECTED ACY- Each undirected edge is converted to a directed
CLIC edge oriented from alower index vertex to a higher
index one. If no self-loops were present, then the
result is a directed acyclic graph.
Returns:

Error code.

Time complexity: O(|V[+|E]), the number of vertices plus the number of edges.

i graph_to_undirect ed — Convert adirected graph
to an undirected one.

int igraph_to_undirected(igraph_t *graph,
i graph_to_undirected_t node,
const igraph_attribute_conbination_t *edge_comb);

If the supplied graph is undirected, this function does nothing.

Arguments:
graph: The graph object to convert.
node: Constant, specifies the details of how exactly the conversion is done. Possible val-

ues: | GRAPH_TO _UNDI RECTED_EACH: the number of edges remainsconstant, an
undirected edgeiscreated for each directed one, thisversion might create graphswith
multiple edges; | GRAPH _TO UNDI RECTED COLLAPSE: one undirected edge
will be created for each pair of vertices which are connected with at least one direct-
ed edge, no multiple edgeswill be created. | GRAPH_TO_UNDI RECTED MUJUTUAL
creates an undirected edge for each pair of mutual edgesin the directed graph. Non-
mutual edges are lost. This mode might create multiple edges.

364

Structural properties of graphs

edge_conb: What to do with the edge attributes. See the igraph manual section about attributes
for details.
Returns:
Error code.

Time complexity: O(|V|+|E|), the number of vertices plus the number of edges.

Example 13.30. Fileexanpl es/ si npl e/ i graph_to_undirected. c

Spectral properties

| graph_I| apl aci an — Returns the Laplacian matrix of
agraph

int igraph_l aplaci an(const igraph_t *graph, igraph_matrix_t *res,
i graph_sparsemat _t *sparseres,
i graph_bool _t normali zed,
const igraph_vector_t *weights);

The graph Laplacian matrix is similar to an adjacency matrix but contains -1's instead of 1's and the
vertex degrees are included in the diagonal. So the result for edgei--j is-1 if il=j and is equal to the
degree of vertex i if i==j. igraph_laplacian will work on a directed graph; in this case, the diagonal
will contain the out-degrees. Loop edges will be ignored.

The normalized version of the Laplacian matrix has 1 in the diagonal and -1/sgrt(d[i]d[j]) if thereis
an edge fromi toj.

Thefirst version of this function was written by Vincent Matossian.

Arguments:

gr aph: Pointer to the graph to convert.

res: Pointer to an initialized matrix object, the result is stored here. It will be resized
if needed. If it is a null pointer, then it is ignored. At least one of res and
spar ser es must be anon-null pointer.

spar seres: Pointer to an initialized sparse matrix object, the result is stored here, if it isnot a

null pointer. At least one of r es and spar ser es must be anon-null pointer.
normal i zed: Whether to create a normalized Laplacian matrix.
wei ght s: An optional vector containing edge weights, to calculate the weighted Laplacian
matrix. Set it to anull pointer to calculate the unweighted Laplacian.
Returns:
Error code.

Time complexity: O(|V||V]), |V| is the number of vertices in the graph.

365

Structural properties of graphs

Example 13.31. Fileexanpl es/ si npl e/ i graph_I apl aci an. ¢

Non-simple graphs: Multiple and loop edges

| graph_i s_si npl e — Decides whether the input
graph is a simple graph.

int igraph_is_sinmple(const igraph_t *graph, igraph_bool t *res);

A graph isasimple graph if it does not contain loop edges and multiple edges.
Arguments:
graph: Theinput graph.

res: Pointer to a boolean constant, the result is stored here.

Returns:

Error code.

See also:
i graph_is_loop() andigraph_is_multiple() tofind the loops and multiple edges,
i graph_sinplify() togetridof them, ori graph_has_mul ti pl e() to decide whether
thereis at least one multiple edge.

Time complexity: O(|V|+|E]).

| graph_is_| oop — Find the loop edges in a graph.

int igraph_is_loop(const igraph_t *graph, igraph_vector_bool t *res,
i graph_es t es);

A loop edge is an edge from avertex to itself.

Arguments:

graph: Theinput graph.

res: Pointer to an initialized boolean vector for storing the result, it will be resized as needed.
es: The edges to check, for all edgessupply i gr aph_ess_al | () here.
Returns:
Error code.
See also:

366

Structural properties of graphs

i graph_sinplify() togetrid of loop edges.

Time complexity: O(€), the number of edgesto check.

Example 13.32. Fileexanpl es/ si npl e/ i graph_is_| oop.c

| graph_is_multipl e— Find the multiple edges in a
graph.

int igraph_is_multiple(const igraph_t *graph, igraph_vector_bool t *res,
i graph_es t es);

An edgeisamultiple edge if there is another edge with the same head and tail verticesin the graph.

Note that this function returns true only for the second or more appearances of the multiple edges.

Arguments:

graph: Theinput graph.

res: Pointer to a boolean vector, the result will be stored here. It will be resized as needed.

es: The edgesto check. Supply i gr aph_ess_al | () if youwant to check all edges.

Returns:

Error code.

See also:
i graph_count_multiple(),igraph_has rmultiple() andi graph_sinplify().

Time complexity: O(e*d), e isthe number of edges to check and d is the average degree (out-degree
in directed graphs) of the vertices at the tail of the edges.

Example 13.33. Fileexanpl es/sinple/igraph_is multiple.c

| graph_has_nul ti pl e — Check whether the graph
has at least one multiple edge.

int igraph_has nultiple(const igraph_t *graph, igraph_bool t *res);

An edgeisamultiple edge if there is another edge with the same head and tail verticesin the graph.
Arguments:
graph: Theinput graph.

res: Pointer to a boolean variable, the result will be stored here.

367

Structural properties of graphs

Returns:

Error code.

See also:
i graph_count _multiple(),igraph_is_multiple() andigraph_sinmplify().

Time complexity: O(e*d), e is the number of edges to check and d is the average degree (out-degree
in directed graphs) of the vertices at the tail of the edges.

Example 13.34. Fileexanpl es/ si npl e/ i graph_has_nultiple.c

| graph_count _rnul ti pl e — Count the number of ap-
pearances of the edges in a graph.

int igraph_count_multiple(const igraph_t *graph, igraph_vector_t *res, igraph_e

If the graph has no multiple edges then the result vector will befilled with ones. (An edgeisamultiple
edgeif there is another edge with the same head and tail verticesin the graph.)

Arguments:

graph: Theinput graph.

res: Pointer to avector, the result will be stored here. 1t will be resized as needed.
es: The edges to check. Supply i gr aph_ess_al | () if youwant to check all edges.
Returns:
Error code.
See also:

igraph_is_multiple() andigraph_sinmplify().

Time complexity: O(E d), E is the number of edgesto check and d is the average degree (out-degree
in directed graphs) of the vertices at the tail of the edges.

Mixing patterns

| graph_assortativity nom nal — Assortativity of
a graph based on vertex categories

int igraph_assortativity_nom nal (const igraph_t *graph,
const igraph_vector _t *types,
i graph_real _t *res,
i graph_bool _t directed);

368

Structural properties of graphs

Assuming the vertices of the input graph belong to different categories, this function calculates the
assortativity coefficient of the graph. The assortativity coefficient is between minusone and oneand it
isoneif al connectionsstay within categories, itisminusone, if the network is perfectly disassortative.
For arandomly connected network it is (asymptotically) zero.

See equation (2) in M. E. J. Newman: Mixing patterns in networks, Phys. Rev. E 67, 026126 (2003)
(http://arxiv.org/abs/cond-mat/0209450) for the proper definition.

Arguments:

graph: Theinput graph, it can be directed or undirected.

types: Vector giving the vertex types. They are assumed to be integer numbers, starting with
zero.

res: Pointer to areal variable, theresult is stored here.

di rected: Boolean, it giveswhether to consider edge directionsin adirected graph. It isignored
for undirected graphs.

Returns:

Error code.
Time complexity: O(|E[+t), |E| is the number of edges, t isthe number of vertex types.
See also:

i graph_assortati vi ty if thevertex types are defines by numeric values (e.g. vertex degree),
instead of categories.

Example 13.35. Fileexanpl es/ si npl e/ assortativity.c

| graph_assortativity — Assortativity based on nu-
meric properties of vertices

int igraph_assortativity(const igraph_t *graph,
const igraph_vector_t *typesl,
const igraph_vector_t *types2,
i graph_real _t *res,
i graph_bool _t directed);

This function calculates the assortativity coefficient of the input graph. This coefficient is basically
the correlation between the actual connectivity patterns of the vertices and the pattern expected from
the distribution of the vertex types.

See equation (21) in M. E. J. Newman: Mixing patterns in networks, Phys. Rev. E 67, 026126
(2003) (http://arxiv.org/abs/cond-mat/0209450) for the proper definition. The actual calculation is
performed using eguation (26) in the same paper for directed graphs, and equation (4) in M. E. J.
Newman: Assortative mixing in networks, Phys. Rev. Lett. 89, 208701 (2002) (http://arxiv.org/abs/
cond-mat/0205405/) for undirected graphs.

Arguments:
graph: Theinput graph, it can be directed or undirected.
typesl: The vertex values, these can be arbitrary numeric values.

369

http://arxiv.org/abs/cond-mat/0209450
http://arxiv.org/abs/cond-mat/0209450
http://arxiv.org/abs/cond-mat/0205405/
http://arxiv.org/abs/cond-mat/0205405/

Structural properties of graphs

types2: A second value vector to be using for the incoming edges when cal culating assortativ-
ity for adirected graph. Supply anull pointer here if you want to use the same values
for outgoing and incoming edges. This argument is ignored (with a warning) if it is
not anull pointer and undirected assortativity coefficient is being calculated.

res: Pointer to areal variable, theresult is stored here.

di rect ed: Boolean, whether to consider edge directions for directed graphs. It is ignored for
undirected graphs.

Returns:

Error code.

Time complexity: O(|E]), linear in the number of edges of the graph.

See also:

i graph_assortativity_nom nal () if you have discrete vertex categories instead of nu-
meric labels, and i gr aph_assortati vity_degree() for the specia case of assortativity
based on vertex degree.

Example 13.36. Fileexanpl es/ si npl e/ assortativity.c

| graph_assortativity degree — Assortativity of a
graph based on vertex degree

int igraph_assortativity degree(const igraph_t *graph,
i graph_real _t *res,
i graph_bool _t directed);

Assortativity based on vertex degree, please see the discussion at the documentation of i gr aph_as-
sortativity() for detals.

Arguments:
graph: Theinput graph, it can be directed or undirected.
res: Pointer to areal variable, the result is stored here.

di rected: Boolean, whether to consider edge directions for directed graphs. This argument is
ignored for undirected graphs. Supply 1 (=TRUE) here to do the natural thing, i.e.
use directed version of the measure for directed graphs and the undirected version for
undirected graphs.

Returns:

Error code.
Time complexity: O(|E[+|V]), |E| is the number of edges, |V|isthe number of vertices.

See also:

i graph_assortativity() forthe general function calculating assortativity for any kind of
numeric vertex values.

370

Structural properties of graphs

Example 13.37. Fileexanpl es/ si npl e/ assortativity.c

K-Cores

| graph_cor eness — Finding the coreness of the ver-
tices in a network.

i nt igraph_coreness(const igraph_ t *graph, igraph_vector_t *cores,
i graph_nei node_t node);

The k-core of agraph isamaximal subgraph in which each vertex has at |east degree k. (Degree here
means the degree in the subgraph of course.). The coreness of a vertex is the highest order of a k-
core containing the vertex.

This function implements the algorithm presented in Vladimir Batagelj, Matjaz Zaversnik: An O(m)
Algorithm for Cores Decomposition of Networks.

Arguments:
graph: Theinput graph.

cores: Pointer to an initialized vector, the result of the computation will be stored here. It will
be resized as needed. For each vertex it contains the highest order of a core containing
the vertex.

node: For directed graph it specifies whether to calculate in-