Use this if you are using igraph from R
| max_cardinality {igraph} | R Documentation | 
Maximum cardinality search is a simple ordering a vertices that is useful in determining the chordality of a graph.
max_cardinality(graph)
| graph | The input graph. It may be directed, but edge directions are ignored, as the algorithm is defined for undirected graphs. | 
Maximum cardinality search visits the vertices in such an order that every time the vertex with the most already visited neighbors is visited. Ties are broken randomly.
The algorithm provides a simple basis for deciding whether a graph is
chordal, see References below, and also is_chordal.
A list with two components:
| alpha | Numeric vector. The 1-based rank of each vertex in the graph such that the vertex with rank 1 is visited first, the vertex with rank 2 is visited second and so on. | 
| alpham1 | Numeric vector. The inverse of  | 
Gabor Csardi csardi.gabor@gmail.com
Robert E Tarjan and Mihalis Yannakakis. (1984). Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM Journal of Computation 13, 566–579.
## The examples from the Tarjan-Yannakakis paper
g1 <- graph_from_literal(A-B:C:I, B-A:C:D, C-A:B:E:H, D-B:E:F,
                E-C:D:F:H, F-D:E:G, G-F:H, H-C:E:G:I,
                I-A:H)
max_cardinality(g1)
is_chordal(g1, fillin=TRUE)
g2 <- graph_from_literal(A-B:E, B-A:E:F:D, C-E:D:G, D-B:F:E:C:G,
                E-A:B:C:D:F, F-B:D:E, G-C:D:H:I, H-G:I:J,
                I-G:H:J, J-H:I)
max_cardinality(g2)
is_chordal(g2, fillin=TRUE)