Use this if you are using igraph from R
centr_eigen {igraph} | R Documentation |
See centralize
for a summary of graph centralization.
centr_eigen(
graph,
directed = FALSE,
scale = TRUE,
options = arpack_defaults,
normalized = TRUE
)
graph |
The input graph. |
directed |
logical scalar, whether to use directed shortest paths for calculating eigenvector centrality. |
scale |
Whether to rescale the eigenvector centrality scores, such that the maximum score is one. |
options |
This is passed to |
normalized |
Logical scalar. Whether to normalize the graph level centrality score by dividing by the theoretical maximum. |
A named list with the following components:
vector |
The node-level centrality scores. |
value |
The corresponding eigenvalue. |
options |
ARPACK options, see the return value of
|
centralization |
The graph level centrality index. |
theoretical_max |
The same as above, the theoretical maximum centralization score for a graph with the same number of vertices. |
Other centralization related:
centr_betw_tmax()
,
centr_betw()
,
centr_clo_tmax()
,
centr_clo()
,
centr_degree_tmax()
,
centr_degree()
,
centr_eigen_tmax()
,
centralize()
# A BA graph is quite centralized
g <- sample_pa(1000, m = 4)
centr_degree(g)$centralization
centr_clo(g, mode = "all")$centralization
centr_betw(g, directed = FALSE)$centralization
centr_eigen(g, directed = FALSE)$centralization
# The most centralized graph according to eigenvector centrality
g0 <- make_graph(c(2,1), n = 10, dir = FALSE)
g1 <- make_star(10, mode = "undirected")
centr_eigen(g0)$centralization
centr_eigen(g1)$centralization