Use this if you are using igraph from R
cluster_fast_greedy {igraph} | R Documentation |
This function tries to find dense subgraph, also called communities in graphs via directly optimizing a modularity score.
cluster_fast_greedy(
graph,
merges = TRUE,
modularity = TRUE,
membership = TRUE,
weights = NULL
)
graph |
The input graph |
merges |
Logical scalar, whether to return the merge matrix. |
modularity |
Logical scalar, whether to return a vector containing the modularity after each merge. |
membership |
Logical scalar, whether to calculate the membership vector corresponding to the maximum modularity score, considering all possible community structures along the merges. |
weights |
The weights of the edges. It must be a positive numeric vector,
|
This function implements the fast greedy modularity optimization algorithm for finding community structure, see A Clauset, MEJ Newman, C Moore: Finding community structure in very large networks, http://www.arxiv.org/abs/cond-mat/0408187 for the details.
cluster_fast_greedy
returns a communities
object, please see the communities
manual page for details.
Tamas Nepusz ntamas@gmail.com and Gabor Csardi csardi.gabor@gmail.com for the R interface.
A Clauset, MEJ Newman, C Moore: Finding community structure in very large networks, http://www.arxiv.org/abs/cond-mat/0408187
communities
for extracting the results.
See also cluster_walktrap
,
cluster_spinglass
,
cluster_leading_eigen
and
cluster_edge_betweenness
, cluster_louvain
cluster_leiden
for other methods.
g <- make_full_graph(5) %du% make_full_graph(5) %du% make_full_graph(5)
g <- add_edges(g, c(1,6, 1,11, 6, 11))
fc <- cluster_fast_greedy(g)
membership(fc)
sizes(fc)