Use this if you are using igraph from R
predict_edges {igraph} | R Documentation |
predict_edges
uses a hierarchical random graph model to predict
missing edges from a network. This is done by sampling hierarchical models
around the optimum model, proportionally to their likelihood. The MCMC
sampling is stated from hrg
, if it is given and the start
argument is set to TRUE
. Otherwise a HRG is fitted to the graph
first.
predict_edges(
graph,
hrg = NULL,
start = FALSE,
num.samples = 10000,
num.bins = 25
)
graph |
The graph to fit the model to. Edge directions are ignored in directed graphs. |
hrg |
A hierarchical random graph model, in the form of an
|
start |
Logical, whether to start the fitting/sampling from the
supplied |
num.samples |
Number of samples to use for consensus generation or missing edge prediction. |
num.bins |
Number of bins for the edge probabilities. Give a higher number for a more accurate prediction. |
A list with entries:
edges |
The predicted edges, in a two-column matrix of vertex ids. |
prob |
Probabilities of these edges, according to the fitted model. |
hrg |
The (supplied or fitted) hierarchical random graph model. |
A. Clauset, C. Moore, and M.E.J. Newman. Hierarchical structure and the prediction of missing links in networks. Nature 453, 98–101 (2008);
A. Clauset, C. Moore, and M.E.J. Newman. Structural Inference of Hierarchies in Networks. In E. M. Airoldi et al. (Eds.): ICML 2006 Ws, Lecture Notes in Computer Science 4503, 1–13. Springer-Verlag, Berlin Heidelberg (2007).
Other hierarchical random graph functions:
consensus_tree()
,
fit_hrg()
,
hrg-methods
,
hrg_tree()
,
hrg()
,
print.igraphHRGConsensus()
,
print.igraphHRG()
,
sample_hrg()
## We are not running these examples any more, because they
## take a long time (~15 seconds) to run and this is against the CRAN
## repository policy. Copy and paste them by hand to your R prompt if
## you want to run them.
## Not run:
## A graph with two dense groups
g <- sample_gnp(10, p=1/2) + sample_gnp(10, p=1/2)
hrg <- fit_hrg(g)
hrg
## The consensus tree for it
consensus_tree(g, hrg=hrg, start=TRUE)
## Prediction of missing edges
g2 <- make_full_graph(4) + (make_full_graph(4) - path(1,2))
predict_edges(g2)
## End(Not run)