Package ‘igraph’

October 15, 2021
Version 1.2.7
Title Network Analysis and Visualization
Author See AUTHORS file.
Maintainer Tamds Nepusz <ntamas@gmail.com>

Description Routines for simple graphs and network analysis. It can
handle large graphs very well and provides functions for generating random
and regular graphs, graph visualization, centrality methods and much more.

Depends methods

Imports graphics, grDevices, magrittr, Matrix, pkgconfig (>= 2.0.0),
stats, utils

Suggests ape, graph, igraphdata, rgl, scales, stats4, tcltk, testthat,
withr, digest

License GPL (>=2)

URL https://igraph.org
SystemRequirements gmp (optional), libxml2 (optional), glpk (optional)

BugReports https://github.com/igraph/rigraph/issues
Encoding UTF-8

Collate 'adjacency.R''auto.R' 'assortativity.R' ‘attributes.R’
'basic.R' 'bipartite.R' 'centrality.R' 'centralization.R'
'cliques.R' 'cocitation.R' 'cohesive.blocks.R' '‘community.R’
'components.R' 'console.R' 'conversion.R' 'data_frame.R’
'decomposition.R' 'degseq.R' 'demo.R' 'embedding.R' 'epi.R’
'fitR' 'flow.R' 'foreign.R' 'games.R' 'glet.R' 'hrg.R’
'igraph-package.R' 'incidence.R' 'indexing.R' 'interface.R'
'iterators.R' 'layout.R' 'layout_drl.R' lazyeval.R' 'make.R’
'minimum.spanning.tree.R' 'motifs.R' 'nexus.R' 'operators.R’
'other.R' 'package.R' 'palette.R' 'par.R' ‘paths.R’ 'plot.R’
"‘plot.common.R' 'plot.shapes.R' ‘pp.R' 'print.R' 'printr.R’
'random_walk.R' rewire.R' 'scan.R' 'scg.R' 'sgm.R’
'similarity.R' 'simple.R' 'sir.R' 'socnet.R' 'sparsedf.R’
'structural.properties.R' 'structure.info.R' 'test.R’

'tkplot.R' 'topology.R' 'triangles.R' 'utils.R' 'uuid.R'
'versions.R' 'weakref.R' 'zzz-deprecate.R'

RoxygenNote 7.1.2

NeedsCompilation yes

https://igraph.org
https://github.com/igraph/rigraph/issues

2 R topics documented:

Repository CRAN
Date/Publication 2021-10-15 10:20:05 UTC

R topics documented:

igraph-package L. 9
[dgraph e 11
[[dgraph e e 13
o>% 15
+agraph . .o e 15
add_edges e e 17
add_layout_ 18
add_vertiCes e e 19
adjacent_VertiCes e e e e e e e 20
all_simple_paths 20
alpha_centrality L 21
are_adjacent 23
arpack_defaults L e 24
articulation_points L e e e e 27
as. directed L L L e e e 28
as.dgraph L e e 30
as_adj_list 31
as_adjacency_matrixX a e e e e e e e e e e e 32
as_data_frame L L L e e e 33
as_edgelist. 35
as_graphnel 36
as_1dS . . L s, 37
as_Incidence_MatriX v v e e e e e e e e e e 38
as_long_data_frame L. 39
as_membership 39
asSOTtAtiVILY o o o e e e e e e e e e e 40
authority_score e 42
automorphisms e e 43
bES . e 44
biconnected_components L. oo e e 46
bipartite_mapping e e e e e e 47
bipartite_projection e 48
cigraph.es e e 50
cigraph.vs L e 51
canonical_permutation e 51
categorical_pal L e 53
CENtr_DEIW L o e 54
CENtr_bEtW_tMAaX e e e e e e e e 55
centr_Clo L e e 55
centr_clo_tmax e 56
CeNr_degree e e e e e e e e 57
centr_degree_tmax e e e e e 58
CENIT_CIZEN o i it e e e e e e e e e e e e e e e 59
CENr_EIZeNn_tmMaX o v v v vt e it e e e e e e e e e e 60
centralize L. e e e e e 61

cliques e e 62

R topics documented: 3

closeness e e e e e 64
cluster_edge_betweenness 65
cluster_fast_greedy 67
cluster_fluid_communities e 69
cluster_infomap 70
cluster_label_prop. L 71
cluster_leading_eigen e e e 72
cluster_leiden e 75
cluster_louvain e 76
cluster_optimal 77
cluster_spinglass e 79
cluster_walktrap 81
COCItAtION e e e e e e e e e e e e e 83
cohesive_bIOCKS s 84
COMPATE . o o o o v v e e et e e e e e e e e e e e e 88
COMPIEMENLEr ot e e e e e e e e e e e 89
component_distribution Lo 90
COMPONENE_WISE . .« . v v v v v e i e e e e e e e e e e e e e e e e e 91
COMPOSE .« o v v v v e e e e et e e e e e e e e e e e 92
CONSENSUS_LIEE v v v v vt e e e e e e e e e e e e e 93
console L e e e 94
CONSIIAING v o i it e e e e e e e e 95
CONITACE o i ot it e e e e e e e e e e e e e e 96
convex_hull e e e 97
COTEMESS &+ v v v v v v e 97
count_isomorphismso e e 98
count_motifs L. e e e e e e e e e 99
count_subgraph_isomorphisms 100
count_triangles L. e e e e e e 101
curve_multiple 103
decompose 104
degree e e 105
delete_edge_attr e e 106
delete_edges 106
delete_graph_attr e e 107
delete_vertex_attr e e e e 108
delete_VEertiCes e e 108
dfs . . e e e e 109
diameter e 111
difference e e e e 112
difference.igraph 113
difference.igraph.es L L 114
difference.igraph.vs L. 115
dim_select e 115
disjoint_union e 117
distance_table e 118
diverging_pal 121
diversity e 122
dominator_tree e 123
Drawing graphs L 124
dyad_Census e e e e e e 130

R topics documented:

each_edge 132
ECCENITICILY o o i e e e e e e e e e 133
edge . . . e 134
edge_attr L L e 135
edge_attr Names e e e e 136
edge_attr<- e 136
edge_Connectivity i e e e e e e e 137
edge_density 139
€ZO_SIZE . o« v i e e e e e e 140
eigen_centrality e e 141
embed_adjacency_matrix oL .o e e 143
embed_laplacian_matrixo e 145
ends e 147
erdosS.renyi.game i e e e e e e e e 147
estimate_DEtWEENNESS o v e e e e e e e e e e 149
fit_hrg e 151
fitpower_law L 152
getedge.dds L e e 154
girth e 156
gordero e 157
Sraph_ e e 157
graph_attr 158
graph_attr_ Names e e e e 159
graph_attr<- e e e e e e 159
graph_from_adj_list. 160
graph_from_adjacency_matrix L. oL 161
graph_from_atlas L 164
graph_from_edgelist 165
graph_from_graphdb 166
graph_from_graphnel oL oo 167
graph_from_incidence_matrix 168
graph_from_isomorphism_class 170
graph_from_lcf oL 170
graph_from_literal 171
graph_id e e 173
Graph_Version e e e e e e 174
graphlet_basis L 175
GIOUPS & v v v e 176
SSIZE . . . L 177
head_of L e 178
head_print L e 178
hrg . . e 179
hrg-methods L e 180
hrg tree L e 180
hub_score 181
identical_graphs 182
igraph-attribute-combination o oL oo 182
igraph-dollar 184
igraph-es-attributes L. e 185
igraph-es-indexing 186
igraph-es-indexing2 188

igraph-minus 189

R topics documented: 5

igraph-vs-attributes L 190
igraph-vs-indexing e e e 192
igraph-vs-indexing2 194
igraph_demo L 195
igraph_options 196
igraph_test. 198
Igraph_version e e e e e e e e 198
Incident L e e e e e e e e e 199
incident_edges e 200
indent_print e e e e e e e 200
INErSECHiONt it e e e e e e e e e e e e e e e e e e e 201
intersection.igraph 201
intersection.igraph.es e e 202
intersection.igraph.vs Lo 203
is_bipartite e 204
is_chordal 205
is_dag . ..o 206
1S_degSeq « v v . e e e 207
is_directed e e 208
is_graphical 209
IS_igraph L e e 210
is_matching 210
IS_MIN_SEPArator v v vt e e e e e e e e e e e 212
is_named L e 213
is_printer_callback 214
IS_SEPAratOr v e e e e e e e e 214
is_weighted 215
isomorphic 216
isomorphism_class 218
isomorphisms 219
IVS o e e e e e e e 219
keeping_degseq e e e e 221
knn ..o 222
laplacian_matrix e e e 223
layout.fruchterman.reingold.grid o 224
layout.reingold.tilford 225
layout.Spring e e 225
layout.svd L e 226
layout_ . . . L 226
layout_as_bipartite e e e e 228
layout_as_star e 229
layout_as_treeo e e 230
layout_in_circle e e e 232
layout_nicely L 233
layout_on_grid L e 234
layout_on_sphere e e 235
layout_randomly L 236
layout_with_dh 237
layout_with_drl 239
layout_with_fr. 242
layout_with_gem 244

layout_with_graphopt L 245

R topics documented:

layout_with_kk 247
layout_with_lIgl 249
layout_with_mds 250
layout_with_sugiyama 251
local_scan e e e e e e e e 255
make e e 257
make_chordal_ring 258
make_CIUStErs e e e e e 259
make_de_bruijn_graph 259
make_empty_graph L. L 260
make_full_bipartite_graph 261
make_full_citation_graph L oo 262
make_full_graph 263
make_graph e 264
make_kautz_graph 267
make_lattice e e e e e e e e e e e e e 268
make_line_graph 269
make TING o e e e e e e e e e e e 270
make_Star e e e e 270
MakKe _tre€e o o e e e e 271
match_VErtiCeS e e e e e e 272
max_cardinality e e 273
max_flowo e 274
membership e 276
mMerge_coords e e e e e e e e 280
MIN_CUL . . . L o o e o o e e e e e e e e e e 281
MIN_SEPATAtOTS . . .« . v v v v v e e e e e e e e e e e e e e e e e 283
MUN_SE_SEPArALOrS . . .+« o o v v v i e e e e e e e e e e e e e 284
modularity.igraph 285
motifs e e e e 286
MSE. . .t o o e e e e e e e e e 287
neighbors e e e 288
NOIM_COOTdS o o o e e e e e e e e e 289
normalize e e e e 290
page_rank L e e e e e e e e 291
path . . . e 293
PEIMULE vt ot e e e e e e e e e e 294
Pie charts as vertices e e e 295
plotigraph 296
PIOLSIT . . . o o e e e e e e e 297
plot_dendrogram 299
plot_dendrogram.igraphHRG o 301
power_centrality e e e e e 303
predict_edges 305
printigrapho 306
printigraph.es L e e e e e 308
printigraph.vs oL 309
printigraphHRG 310
print.igraphHRGConsensus e 311
print.nexusDatasetlnfoo L 312
printer_callback 316

PIINTT L e e 316

R topics documented: 7

r_pal . .o 317
radis e 317
random_walk L 318
read_grapho 319
TECIPIOCILY o o e e 320
repagraph oL L 321
TEV.AZIAPN.ES o o e e e e e e e e 321
revigraph.vs oL L e 322
TEWITE . o v v v v e e e e e e e e e e e e e e e e e e 323
rglplot . . . e e e 323
TUNNING_ MEAN .« . . o . v v e v v e e e e e e e e e e e e e e e e e 324
sample_ 325
sample_bipartite e e e e e 326
sample_correlated_gnp L. 327
sample_correlated_gnp_pair L 328
sample_degseq e e e 329
sample_dirichlet 331
sample_dot_product L. e e 332
sample_fitness L. L e 333
sample_fitness_pl 334
sample_forestfire e 336
sample_gnm 337
sample_gnp 338
sample_grg e e e e e 339
Sample_growing e 340
sample_hierarchical_sbm oL oo 341
sample_hrg L 342
sample_islands 342
sample_k_regular e 343
sample_last_Cit L e e 344
sample_motifs 345
sample_pa e e e e e e e e 346
sample_pa_age e 349
sample_pref L 351
sample_sbm e e e 353
sample_seq e e e 354
sample_smallworld 355
sample_sphere_surface 356
sample_sphere_volume 357
sample_traits_callaway e e e e 358
SCAN_SEAL . o« v v o e e e e e e e e e e e e e e 359
SCE o e e e 360
scg-method L L L e e e 364
SCE_EPS '« v i i e e e e e e e e e e 365
SCEZ_GIOUP .« + v v e o v e e e e e e e e e e e e e 366
SCE_SEMI_PIO] » v v v v v v e 368
sequential_pal L. 370
set_edge_attr L. 371
set_graph_attr e e e e e e e e 372
SEt_VEItEX_ At o o o e e e e e e e e e e 372
shapes 373

similarity L e e e e e 377

Index

R topics documented:

simplified 378
simplify 379
SPECLIUIM . . v v v v v v e v e e e e e e e e e e e e e e e 380
split_join_distance L 382
srand L 382
SLLCULS © v v v o e e e e e e 383
SUMIN_CULS . . . v vt e e e e e e e e e e e e e e 384
stochastic_MmatriX o v v o e e e e e e e e e e e e e 385
strength L 386
subcomponent oL e e 387
subgraph L 388
subgraph_centrality L. 389
subgraph_isomorphic 390
subgraph_isomorphisms Lo 392
tail_of e 393
mMe_bINS.SIT. o o e e e 394
tkigraph L L 396
tkplot . . . e 396
TOPO_SOIt .« . . v o i e e e e 399
transitivity e e e e 400
triad_CENnSUS e e e e 402
unfold_tree e 403
10101 (o) K 404
union.graph 405
union.igraph.es 406
union.igraph.vs e 406
unique.igraph.es L L 407
unique.dgraph.vso L L e 408
upgrade_graph L. 409
Ve 409
VEITEX . o o v o e e e e e e e e e e e e e e e e e e 410
VEITEX_ AT . . . o o o o o e e e e e e e e e 411
VErteX_attr NAMES v v v e e e e e e e e e e e e e 412
VEITEX_AttI<- o o e e e e e e e e e e e e e e 413
VErteX_CONNECLIVILY o o ittt e e e e e e e 413
which_multiple 415
which_mutual e 416
with_edge_ 417
with_graph_ 418
with_igraph_opt 418
WIth_VErteX_ e e 419
without_attr e 420
without_loops 420
without_multiples 421
write_graph e 421

423

igraph-package 9

igraph-package The igraph package

Description

igraph is a library and R package for network analysis.

Introduction

The main goals of the igraph library is to provide a set of data types and functions for 1) pain-free
implementation of graph algorithms, 2) fast handling of large graphs, with millions of vertices and
edges, 3) allowing rapid prototyping via high level languages like R.

Igraph graphs

Igraph graphs have a class ‘igraph’. They are printed to the screen in a special format, here is an
example, a ring graph created using make_ring:

IGRAPH U--- 10 10 -- Ring graph
+ attr: name (g/c), mutual (g/x), circular (g/x)

‘IGRAPH’ denotes that this is an igraph graph. Then come four bits that denote the kind of the
graph: the first is ‘U’ for undirected and ‘D’ for directed graphs. The second is ‘N’ for named graph
(i.e. if the graph has the ‘name’ vertex attribute set). The third is ‘W for weighted graphs (i.e. if
the ‘weight’ edge attribute is set). The fourth is ‘B’ for bipartite graphs (i.e. if the ‘type’ vertex
attribute is set).

Then come two numbers, the number of vertices and the number of edges in the graph, and after a
double dash, the name of the graph (the ‘name’ graph attribute) is printed if present. The second line
is optional and it contains all the attributes of the graph. This graph has a ‘name’ graph attribute,
of type character, and two other graph attributes called ‘mutual’ and ‘circular’, of a complex
type. A complex type is simply anything that is not numeric or character. See the documentation of
print.igraph for details.

If you want to see the edges of the graph as well, then use the print_all function:

> print_all(g)
IGRAPH badcafe U--- 10 10 -- Ring graph
+ attr: name (g/c), mutual (g/x), circular (g/x)
+ edges:
[111-- 2 2-- 3 3-- 4 4--55--6 6--7 7-- 8 8-- 9 9--10 1--10

Creating graphs

There are many functions in igraph for creating graphs, both deterministic and stochastic; stochastic
graph constructors are called ‘games’.

To create small graphs with a given structure probably the graph_from_literal function is eas-
iest. It uses R’s formula interface, its manual page contains many examples. Another option is
graph, which takes numeric vertex ids directly. graph.atlas creates graph from the Graph Atlas,
make_graph can create some special graphs.

To create graphs from field data, graph_from_edgelist, graph_from_data_frame and graph_from_adjacency_matr:
are probably the best choices.

10 igraph-package

The igraph package includes some classic random graphs like the Erdos-Renyi GNP and GNM
graphs (sample_gnp, sample_gnm) and some recent popular models, like preferential attachment
(sample_pa) and the small-world model (sample_smallworld).

Vertex and edge IDs

Vertices and edges have numerical vertex ids in igraph. Vertex ids are always consecutive and they
start with one. L.e. for a graph with n vertices the vertex ids are between 1 and n. If some operation
changes the number of vertices in the graphs, e.g. a subgraph is created via induced_subgraph,
then the vertices are renumbered to satisfy this criteria.

The same is true for the edges as well, edge ids are always between one and m, the total number of
edges in the graph.

It is often desirable to follow vertices along a number of graph operations, and vertex ids don’t
allow this because of the renumbering. The solution is to assign attributes to the vertices. These are
kept by all operations, if possible. See more about attributes in the next section.

Attributes

In igraph it is possible to assign attributes to the vertices or edges of a graph, or to the graph itself.
igraph provides flexible constructs for selecting a set of vertices or edges based on their attribute
values, see vertex_attr, V and E for details.

Some vertex/edge/graph attributes are treated specially. One of them is the ‘name’ attribute. This is
used for printing the graph instead of the numerical ids, if it exists. Vertex names can also be used
to specify a vector or set of vertices, in all igraph functions. E.g. degree has a v argument that gives
the vertices for which the degree is calculated. This argument can be given as a character vector of
vertex names.

Edges can also have a ‘name’ attribute, and this is treated specially as well. Just like for vertices,
edges can also be selected based on their names, e.g. in the delete_edges and other functions.

We note here, that vertex names can also be used to select edges. The form ‘from|to’, where ‘from’
and ‘to’ are vertex names, select a single, possibly directed, edge going from ‘from’ to ‘to’. The
two forms can also be mixed in the same edge selector.

Other attributes define visualization parameters, see igraph.plotting for details.

Attribute values can be set to any R object, but note that storing the graph in some file formats might
result the loss of complex attribute values. All attribute values are preserved if you use save and
load to store/retrieve your graphs.

Visualization

igraph provides three different ways for visualization. The first is the plot. igraph function. (Ac-
tually you don’t need to write plot. igraph, plot is enough. This function uses regular R graphics
and can be used with any R device.

The second function is tkplot, which uses a Tk GUI for basic interactive graph manipulation. (Tk
is quite resource hungry, so don’t try this for very large graphs.)

The third way requires the rgl package and uses OpenGL. See the rglplot function for the details.
Make sure you read igraph.plotting before you start plotting your graphs.

File formats

igraph can handle various graph file formats, usually both for reading and writing. We suggest that
you use the GraphML file format for your graphs, except if the graphs are too big. For big graphs a
simpler format is recommended. See read_graph and write_graph for details.

[.igraph

Further information

11

The igraph homepage is at https://igraph.org. See especially the documentation section. Join
the discussion forum at https://igraph.discourse.group if you have questions or comments.

[.igraph

Query and manipulate a graph as it were an adjacency matrix

Description

Query and manipulate a graph as it were an adjacency matrix

Usage

S3 method for class 'igraph'

x[
i,
3,

L

from,

to,

sparse = igraph_opt("sparsematrices”),

edges

drop
attr

Arguments

from

to

sparse
edges
drop
attr

FALSE,
TRUE,
if (is_weighted(x)) "weight"” else NULL

The graph.

Index. Vertex ids or names or logical vectors. See details below.
Index. Vertex ids or names or logical vectors. See details below.
Currently ignored.

A numeric or character vector giving vertex ids or names. Together with the to
argument, it can be used to query/set a sequence of edges. See details below.
This argument cannot be present together with any of the i and j arguments and
if it is present, then the to argument must be present as well.

A numeric or character vector giving vertex ids or names. Together with the
from argument, it can be used to query/set a sequence of edges. See details be-
low. This argument cannot be present together with any of the i and j arguments
and if it is present, then the from argument must be present as well.

Logical scalar, whether to return sparse matrices.
Logical scalar, whether to return edge ids.
Ignored.

If not NULL, then it should be the name of an edge attribute. This attribute is
queried and returned.

https://igraph.org
https://igraph.discourse.group

12 [.igraph

Details

The single bracket indexes the (possibly weighted) adjacency matrix of the graph. Here is what you
can do with it:

1. Check whether there is an edge between two vertices (v and w) in the graph:
graph[v, w]
A numeric scalar is returned, one if the edge exists, zero otherwise.
2. Extract the (sparse) adjacency matrix of the graph, or part of it:
graph[]
graph[1:3,5:6]
graph[c(1,3,5),]
The first variants returns the full adjacency matrix, the other two return part of it.

3. The from and to arguments can be used to check the existence of many edges. In this case,
both from and to must be present and they must have the same length. They must contain
vertex ids or names. A numeric vector is returned, of the same length as from and to, it
contains ones for existing edges edges and zeros for non-existing ones. Example:

graph[from=1:3, to=c(2,3,5)]

4. For weighted graphs, the [operator returns the edge weights. For non-esistent edges zero
weights are returned. Other edge attributes can be queried as well, by giving the attr argu-
ment.

5. Querying edge ids instead of the existance of edges or edge attributes. E.g.
graph[1, 2, edges=TRUE]
returns the id of the edge between vertices 1 and 2, or zero if there is no such edge.

6. Adding one or more edges to a graph. For this the element(s) of the imaginary adjacency
matrix must be set to a non-zero numeric value (or TRUE):

graph[1, 2] <- 1
graph[1:3,1] <- 1
graph[from=1:3, to=c(2,3,5)] <- TRUE

This does not affect edges that are already present in the graph, i.e. no multiple edges are
created.

7. Adding weighted edges to a graph. The attr argument contains the name of the edge attribute
to set, so it does not have to be ‘weight’:

graph[1, 2, attr="weight"]<- 5
graph[from=1:3, to=c(2,3,5)] <- c(1,-1,4)

If an edge is already present in the network, then only its weights or other attribute are updated.
If the graph is already weighted, then the attr="weight" setting is implicit, and one does not
need to give it explicitly.

8. Deleting edges. The replacement syntax allow the deletion of edges, by specifying FALSE or
NULL as the replacement value:

graph[v, w] <- FALSE

removes the edge from vertex v to vertex w. As this can be used to delete edges between two
sets of vertices, either pairwise:

[[.igraph 13

graph[from=v, to=w] <- FALSE
or not:
graph[v, w] <- FALSE

if v and w are vectors of edge ids or names.

‘[’ allows logical indices and negative indices as well, with the usual R semantics. E.g.
graph[degree(graph)==0, 1] <- 1
adds an edge from every isolate vertex to vertex one, and

G <- make_empty_graph(10)
G[-1,11 <- TRUE

creates a star graph.

Of course, the indexing operators support vertex names, so instead of a numeric vertex id a vertex
can also be given to ‘[’ and ‘[[’.

Value

A scalar or matrix. See details below.

See Also

Other structural queries: [[.igraph(), adjacent_vertices(), are_adjacent(), ends(), get.edge.ids(),
gorder(), gsize(), head_of (), incident_edges(), incident(), is_directed(), neighbors(),
tail_of ()

[[.igraph Query and manipulate a graph as it were an adjacency list

Description

Query and manipulate a graph as it were an adjacency list

Usage

S3 method for class 'igraph'

x[[i, j, from, to, ..., directed = TRUE, edges = FALSE, exact = TRUE]]
Arguments

X The graph.

i Index, integer, character or logical, see details below.

j Index, integer, character or logical, see details below.

from A numeric or character vector giving vertex ids or names. Together with the to

argument, it can be used to query/set a sequence of edges. See details below.
This argument cannot be present together with any of the i and j arguments and
if it is present, then the to argument must be present as well.

14 [[.igraph

to A numeric or character vector giving vertex ids or names. Together with the
from argument, it can be used to query/set a sequence of edges. See details be-
low. This argument cannot be present together with any of the i and j arguments
and if it is present, then the from argument must be present as well.

Additional arguments are not used currently.

directed Logical scalar, whether to consider edge directions in directed graphs. It is
ignored for undirected graphs.

edges Logical scalar, whether to return edge ids.
exact Ignored.
Details

The double bracket operator indexes the (imaginary) adjacency list of the graph. This can used for
the following operations:

1. Querying the adjacent vertices for one or more vertices:

graph[[1:3,]]
graph[[,1:3]]

The first form gives the successors, the second the predecessors or the 1:3 vertices. (For
undirected graphs they are equivalent.)

2. Querying the incident edges for one or more vertices, if the edges argument is set to TRUE:

graph[[1:3, , edges=TRUE]]
graph[[, 1:3, edges=TRUE]]

3. Querying the edge ids between two sets or vertices, if both indices are used. E.g.
graph[[v, w, edges=TRUE]]

gives the edge ids of all the edges that exist from vertices v to vertices w.

The alternative argument names from and to can be used instead of the usual i and j, to make the
code more readable:

graph[[from = 1:3]]
graph[[from = v, to = w, edges = TRUE]]

‘L[’ operators allows logical indices and negative indices as well, with the usual R semantics.

Vertex names are also supported, so instead of a numeric vertex id a vertex can also be given to ‘[’
and ‘[[.

See Also

Other structural queries: [.igraph(), adjacent_vertices(), are_adjacent(),ends(), get.edge.ids(),
gorder(), gsize(), head_of (), incident_edges(), incident(), is_directed(), neighbors(),
tail_of ()

%>% 15

%>% Magrittr’s pipes

Description

igraph re-exports the %>% operator of magrittr, because we find it very useful. Please see the docu-
mentation in the magrittr package.

Arguments
lhs Left hand side of the pipe.
rhs Right hand side of the pipe.
Value

Result of applying the right hand side to the result of the left hand side.

Examples

make_ring(10) %>%
add_edges(c(1,6)) %>%
plot()

+.igraph Add vertices, edges or another graph to a graph

Description

Add vertices, edges or another graph to a graph

Usage
S3 method for class 'igraph'
el + e2

Arguments

el First argument, probably an igraph graph, but see details below.

e2 Second argument, see details below.

Details

The plus operator can be used to add vertices or edges to graph. The actual operation that is per-
formed depends on the type of the right hand side argument.

* Ifis is another igraph graph object and they are both named graphs, then the union of the two
graphs are calculated, see union.

« If it is another igraph graph object, but either of the two are not named, then the disjoint union
of the two graphs is calculated, see disjoint_union.

+.igraph

* If it is a numeric scalar, then the specified number of vertices are added to the graph.

o If it is a character scalar or vector, then it is interpreted as the names of the vertices to add to
the graph.

« Ifitis an object created with the vertex or vertices function, then new vertices are added to
the graph. This form is appropriate when one wants to add some vertex attributes as well. The
operands of the vertices function specifies the number of vertices to add and their attributes
as well.

The unnamed arguments of vertices are concatenated and used as the ‘name’ vertex attribute
(i.e. vertex names), the named arguments will be added as additional vertex attributes. Exam-
ples:

g<-g+
vertex(shape="circle"”, color= "red")
g <- g + vertex("foo"”, color="blue")
g <- g + vertex("bar", "foobar")
g <- g + vertices("bar2", "foobar2", color=1:2, shape="rectangle")

vertex is just an alias to vertices, and it is provided for readability. The user should use it
if a single vertex is added to the graph.

* Ifitis an object created with the edge or edges function, then new edges will be added to the
graph. The new edges and possibly their attributes can be specified as the arguments of the
edges function.

The unnamed arguments of edges are concatenated and used as vertex ids of the end points
of the new edges. The named arguments will be added as edge attributes.
Examples:

g <- make_empty_graph() +
vertices(letters[1:10]) +
vertices("foo", "bar", "bar2", "foobar2")
g <- g + edge("a", "b")
g <- g + edges("foo", "bar", "bar2", "foobar2")
g <- g + edges(c("bar", "foo", "foobar2", "bar2"), color="red", weight=1:2)
See more examples below.
edge is just an alias to edges and it is provided for readability. The user should use it if a
single edge is added to the graph.

* If it is an object created with the path function, then new edges that form a path are added.
The edges and possibly their attributes are specified as the arguments to the path function.
The non-named arguments are concatenated and interpreted as the vertex ids along the path.
The remaining arguments are added as edge attributes.

Examples:
g <- make_empty_graph() + vertices(letters[1:10])
g <_ g + path(llall, Ilbll’ “C”, Ildll)
g <- g + path("e", "f", "g", weight=1:2, color="red")
g <- g + path(c("f", "c”, "j", "d"), width=1:3, color="green")
It is important to note that, although the plus operator is commutative, i.e. is possible to write
graph <- "foo" + make_empty_graph()

it is not associative, e.g.

graph <- "foo" + "bar"” + make_empty_graph()

add_edges 17

results a syntax error, unless parentheses are used:
graph <- "foo" + ("bar” + make_empty_graph())
For clarity, we suggest to always put the graph object on the left hand side of the operator:

graph <- make_empty_graph() + "foo"” + "bar"”

See Also

Other functions for manipulating graph structure: add_edges(), add_vertices(), delete_edges(),
delete_vertices(), edge(), igraph-minus, path(), vertex()

Examples

10 vertices named a,b,c,... and no edges
g <- make_empty_graph() + vertices(letters[1:10])

Add edges to make it a ring
g <- g + path(letters[1:10], letters[1], color = "grey")

Add some extra random edges

g <- g + edges(sample(V(g), 10, replace = TRUE), color = "red")
g$layout <- layout_in_circle

plot(g)

add_edges Add edges to a graph

Description

The new edges are given as a vertex sequence, e.g. internal numeric vertex ids, or vertex names.
The first edge points from edges[1] to edges[2], the second from edges[3] to edges[4], etc.

Usage
add_edges(graph, edges, ..., attr = list())
Arguments
graph The input graph
edges The edges to add, a vertex sequence with even number of vertices.
Additional arguments, they must be named, and they will be added as edge
attributes, for the newly added edges. See also details below.
attr A named list, its elements will be added as edge attributes, for the newly added
edges. See also details below.
Details

If attributes are supplied, and they are not present in the graph, their values for the original edges of
the graph are set to NA.

18 add_layout_

Value

The graph, with the edges (and attributes) added.

See Also
Other functions for manipulating graph structure: +.igraph(), add_vertices(), delete_edges(),
delete_vertices(), edge(), igraph-minus, path(), vertex()

Examples

g <- make_empty_graph(n = 5) %>%
add_edges(c(1,2, 2,3, 3,4, 4,5)) %>%

set_edge_attr("color”, value = "red") %>%
add_edges(c(5,1), color = "green")
E(g)L[]1]
plot(g)
add_layout_ Add layout to graph
Description
Add layout to graph
Usage
add_layout_(graph, ..., overwrite = TRUE)
Arguments
graph The input graph.
Additional arguments are passed to layout_.
overwrite Whether to overwrite the layout of the graph, if it already has one.
Value

The input graph, with the layout added.

See Also

layout_ for a description of the layout APL

Other graph layouts: component_wise(), layout_as_bipartite(), layout_as_star(), layout_as_tree(),
layout_in_circle(), layout_nicely(), layout_on_grid(), layout_on_sphere(), layout_randomly(),
layout_with_dh(), layout_with_fr(), layout_with_gem(), layout_with_graphopt (), layout_with_kk(),
layout_with_1gl(), layout_with_mds(), layout_with_sugiyama(), layout_(), merge_coords(),
norm_coords(), normalize()

Examples

(make_star(11) + make_star(11)) %>%
add_layout_(as_star(), component_wise()) %>%
plot()

add_vertices 19

add_vertices Add vertices to a graph

Description

If attributes are supplied, and they are not present in the graph, their values for the original vertices
of the graph are set to NA.

Usage
add_vertices(graph, nv, ..., attr = list())
Arguments
graph The input graph.
nv The number of vertices to add.
Additional arguments, they must be named, and they will be added as vertex
attributes, for the newly added vertices. See also details below.
attr A named list, its elements will be added as vertex attributes, for the newly added
vertices. See also details below.
Value

The graph, with the vertices (and attributes) added.

See Also

Other functions for manipulating graph structure: +.igraph(), add_edges(), delete_edges(),
delete_vertices(), edge(), igraph-minus, path(), vertex()

Examples

g <- make_empty_graph() %>%
add_vertices(3, color = "red") %>%
add_vertices(2, color = "green") %>%

add_edges(c(1,2, 2,3, 3,4, 4,5))

g
V(g)[[1]
plot(g)

20 all_simple_paths

adjacent_vertices Adjacent vertices of multiple vertices in a graph

Description

This function is similar to neighbors, but it queries the adjacent vertices for multiple vertices at

once.
Usage
adjacent_vertices(graph, v, mode = c("out”, "in", "all”, "total"))
Arguments
graph Input graph.
v The vertices to query.
mode Whether to query outgoing (‘out’), incoming (‘in’) edges, or both types (‘all’).
This is ignored for undirected graphs.
Value

A list of vertex sequences.

See Also

Other structural queries: [.igraph(), [[.igraph(), are_adjacent(), ends(), get.edge.ids(),
gorder (), gsize(), head_of (), incident_edges(), incident (), is_directed(), neighbors(),
tail_of ()

Examples

g <- make_graph(”Zachary")
adjacent_vertices(g, c(1, 34))

all_simple_paths List all simple paths from one source

Description

This function lists are simple paths from one source vertex to another vertex or vertices. A path is
simple if the vertices it visits are not visited more than once.

Usage

all_simple_paths(
graph,
from,
to = V(graph),
mode = c("out”, "in", "all"”, "total"),
cutoff = -1

alpha_centrality 21

Arguments
graph The input graph.
from The source vertex.
to The target vertex of vertices. Defaults to all vertices.
mode Character constant, gives whether the shortest paths to or from the given ver-
tices should be calculated for directed graphs. If out then the shortest paths
Jfrom the vertex, if in then fo it will be considered. If all, the default, then the
corresponding undirected graph will be used, ie. not directed paths are searched.
This argument is ignored for undirected graphs.
cutoff Maximum length of path that is considered. If negative, paths of all lengths are
considered.
Details

Note that potentially there are exponentially many paths between two vertices of a graph, and you
may run out of memory when using this function, if your graph is lattice-like.

This function currently ignored multiple and loop edges.

Value

A list of integer vectors, each integer vector is a path from the source vertex to one of the target
vertices. A path is given by its vertex ids.

Examples

g <- make_ring(10)
all_simple_paths(g, 1, 5)
all_simple_paths(g, 1, c(3,5))

alpha_centrality Find Bonacich alpha centrality scores of network positions

Description

alpha_centrality calculates the alpha centrality of some (or all) vertices in a graph.

Usage

alpha_centrality(
graph,
nodes = V(graph),
alpha = 1,
loops = FALSE,
exo = 1,
weights = NULL,
tol = 1e-07,

sparse = TRUE

22 alpha_centrality

Arguments
graph The input graph, can be directed or undirected
nodes Vertex sequence, the vertices for which the alpha centrality values are returned.
(For technical reasons they will be calculated for all vertices, anyway.)
alpha Parameter specifying the relative importance of endogenous versus exogenous
factors in the determination of centrality. See details below.
loops Whether to eliminate loop edges from the graph before the calculation.
exo The exogenous factors, in most cases this is either a constant — the same factor
for every node, or a vector giving the factor for every vertex. Note that too long
vectors will be truncated and too short vectors will be replicated to match the
number of vertices.
weights A character scalar that gives the name of the edge attribute to use in the adja-
cency matrix. If it is NULL, then the ‘weight’ edge attribute of the graph is used,
if there is one. Otherwise, or if it is NA, then the calculation uses the standard
adjacency matrix.
tol Tolerance for near-singularities during matrix inversion, see solve.
sparse Logical scalar, whether to use sparse matrices for the calculation. The ‘Matrix’
package is required for sparse matrix support
Details

The alpha centrality measure can be considered as a generalization of eigenvector centerality to
directed graphs. It was proposed by Bonacich in 2001 (see reference below).

The alpha centrality of the vertices in a graph is defined as the solution of the following matrix
equation:
z=aATz +e,

where A is the (not necessarily symmetric) adjacency matrix of the graph, e is the vector of ex-
ogenous sources of status of the vertices and « is the relative importance of the endogenous versus
exogenous factors.

Value

A numeric vector contaning the centrality scores for the selected vertices.

Warning

Singular adjacency matrices cause problems for this algorithm, the routine may fail is certain cases.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

References
Bonacich, P. and Lloyd, P. (2001). “Eigenvector-like measures of centrality for asymmetric rela-
tions” Social Networks, 23, 191-201.

See Also

eigen_centrality and power_centrality

are_adjacent 23

Examples

The examples from Bonacich's paper
g.1 <- graph(c(1,3,2,3,3,4,4,5))

g.2 <- graph(c(2,1,3,1,4,1,5,1))

g.3 <- graph(c(1,2,2,3,3,4,4,1,5,1))
alpha_centrality(g.1)
alpha_centrality(g.2)
alpha_centrality(g.3,alpha=0.5)

are_adjacent Are two vertices adjacent?

Description
The order of the vertices only matters in directed graphs, where the existence of a directed (v1,v2)
edge is queried.

Usage

are_adjacent(graph, v1, v2)

Arguments

graph The graph.

vl The first vertex, tail in directed graphs.

v2 The second vertex, head in directed graphs.
Value

A logical scalar, TRUE is a (v1,v2) exists in the graph.

See Also

Other structural queries: [.igraph(), [[.igraph(), adjacent_vertices(), ends(), get.edge.ids(),
gorder(), gsize(), head_of (), incident_edges(), incident(), is_directed(), neighbors(),
tail_of ()

Examples

ug <- make_ring(10)
ug

are_adjacent(ug, 1, 2)
are_adjacent(ug, 2, 1)

dg <- make_ring(10, directed = TRUE)
dg

are_adjacent(ug, 1, 2)
are_adjacent(ug, 2, 1)

24

arpack_defaults

arpack_defaults ARPACK eigenvector calculation

Description

Interface to the ARPACK library for calculating eigenvectors of sparse matrices

Usage

arpack_defaults

arpack(
func,
extra = NULL,
sym = FALSE,

options = arpack_defaults,
env = parent.frame(),

complex = !sym
)
Arguments
func The function to perform the matrix-vector multiplication. ARPACK requires to
perform these by the user. The function gets the vector x as the first argument,
and it should return Az, where A is the “input matrix”. (The input matrix is
never given explicitly.) The second argument is extra.
extra Extra argument to supply to func.
sym Logical scalar, whether the input matrix is symmetric. Always supply TRUE here
if it is, since it can speed up the computation.
options Options to ARPACK, a named list to overwrite some of the default option values.
See details below.
env The environment in which func will be evaluated.
complex Whether to convert the eigenvectors returned by ARPACK into R complex vec-
tors. By default this is not done for symmetric problems (these only have
real eigenvectors/values), but only non-symmetric ones. If you have a non-
symmetric problem, but you’re sure that the results will be real, then supply
FALSE here.
Format

An object of class 1ist of length 14.

Details

ARPACK is a library for solving large scale eigenvalue problems. The package is designed to
compute a few eigenvalues and corresponding eigenvectors of a general n by n matrix A. It is most
appropriate for large sparse or structured matrices A where structured means that a matrix-vector
product w <-Av requires order n rather than the usual order n? floating point operations. Please see

http://www.caam.rice.edu/software/ARPACK/ for details.

http://www.caam.rice.edu/software/ARPACK/

arpack_defaults 25

This function is an interface to ARPACK. igraph does not contain all ARPACK routines, only the
ones dealing with symmetric and non-symmetric eigenvalue problems using double precision real
numbers.

The eigenvalue calculation in ARPACK (in the simplest case) involves the calculation of the Av
product where A is the matrix we work with and v is an arbitrary vector. The function supplied in
the fun argument is expected to perform this product. If the product can be done efficiently, e.g. if
the matrix is sparse, then arpack is usually able to calculate the eigenvalues very quickly.

The options argument specifies what kind of calculation to perform. It is a list with the following
members, they correspond directly to ARPACK parameters. On input it has the following fields:

bmat Character constant, possible values: ‘I’, standard eigenvalue problem, Az = Az; and ‘G’,
generalized eigenvalue problem, Ax = ABx. Currently only ‘I’ is supported.

n Numeric scalar. The dimension of the eigenproblem. You only need to set this if you call arpack
directly. (L.e. not needed for eigen_centrality, page_rank, etc.)

which Specify which eigenvalues/vectors to compute, character constant with exactly two charac-
ters.
Possible values for symmetric input matrices:
"LA" Compute nev largest (algebraic) eigenvalues.
""SA" Compute nev smallest (algebraic) eigenvalues.
"LM" Compute nev largest (in magnitude) eigenvalues.
"SM" Compute nev smallest (in magnitude) eigenvalues.
"BE'" Compute nev eigenvalues, half from each end of the spectrum. When nev is odd,
compute one more from the high end than from the low end.
Possible values for non-symmetric input matrices:

"LM" Compute nev eigenvalues of largest magnitude.
"SM" Compute nev eigenvalues of smallest magnitude.
"LR" Compute nev eigenvalues of largest real part.
"SR" Compute nev eigenvalues of smallest real part.
"LI" Compute nev eigenvalues of largest imaginary part.
""SI'"" Compute nev eigenvalues of smallest imaginary part.
This parameter is sometimes overwritten by the various functions, e.g. page_rank always sets
‘LM,
nev Numeric scalar. The number of eigenvalues to be computed.

tol Numeric scalar. Stopping criterion: the relative accuracy of the Ritz value is considered accept-
able if its error is less than tol times its estimated value. If this is set to zero then machine
precision is used.

ncv Number of Lanczos vectors to be generated.
Idv Numberic scalar. It should be set to zero in the current implementation.

ishift Either zero or one. If zero then the shifts are provided by the user via reverse communication.
If one then exact shifts with respect to the reduced tridiagonal matrix 7'. Please always set this
to one.

maxiter Maximum number of Arnoldi update iterations allowed.
nb Blocksize to be used in the recurrence. Please always leave this on the default value, one.
mode The type of the eigenproblem to be solved. Possible values if the input matrix is symmetric:
1 Ax = Az, A is symmetric.
2 Ax = AM =z, A is symmetric, M is symmetric positive definite.

26 arpack_defaults

3 Kz =AMz, K is symmetric, M is symmetric positive semi-definite.

4 Kz = AKGz, K is symmetric positive semi-definite, K G is symmetric indefinite.

5 Ax = MMz, A is symmetric, M is symmetric positive semi-definite. (Cayley transformed
mode.)

Please note that only mode==1 was tested and other values might not work properly.

Possible values if the input matrix is not symmetric:

1 Ax = Ax.

2 Ax = AMzx, M is symmetric positive definite.
3 Ax = AM=z, M is symmetric semi-definite.

4 Ax = AMz, M is symmetric semi-definite.

Please note that only mode==1 was tested and other values might not work properly.
start Not used currently. Later it be used to set a starting vector.
sigma Not used currently.

sigmai Not use currently.

On output the following additional fields are added:

info Error flag of ARPACK. Possible values:
0 Normal exit.
1 Maximum number of iterations taken.

3 No shifts could be applied during a cycle of the Implicitly restarted Arnoldi iteration.
One possibility is to increase the size of ncv relative to nev.

ARPACK can return more error conditions than these, but they are converted to regular
igraph errors.

iter Number of Arnoldi iterations taken.

nconv Number of “converged” Ritz values. This represents the number of Ritz values that
satisfy the convergence critetion.

numop Total number of matrix-vector multiplications.
numopb Not used currently.

numreo Total number of steps of re-orthogonalization.

Please see the ARPACK documentation for additional details.

Value

A named list with the following members:

values Numeric vector, the desired eigenvalues.

vectors Numeric matrix, the desired eigenvectors as columns. If complex=TRUE (the
default for non-symmetric problems), then the matrix is complex.

options A named list with the supplied options and some information about the per-
formed calculation, including an ARPACK exit code. See the details above.
Author(s)

Rich Lehoucq, Kristi Maschhoff, Danny Sorensen, Chao Yang for ARPACK, Gabor Csardi <csardi.gabor@gmail.com>
for the R interface.

articulation_points 27

References

D.C. Sorensen, Implicit Application of Polynomial Filters in a k-Step Arnoldi Method. SIAM J.
Matr. Anal. Apps., 13 (1992), pp 357-385.

R.B. Lehoucq, Analysis and Implementation of an Implicitly Restarted Arnoldi Iteration. Rice
University Technical Report TR95-13, Department of Computational and Applied Mathematics.

B.N. Parlett & Y. Saad, Complex Shift and Invert Strategies for Real Matrices. Linear Algebra and
its Applications, vol 88/89, pp 575-595, (1987).

See Also

eigen_centrality, page_rank, hub_score, cluster_leading_eigen are some of the functions
inigraph which use ARPACK. The ARPACK homepage is athttp://www.caam.rice.edu/software/
ARPACK/.

Examples

Identity matrix
f <- function(x, extra=NULL) x
arpack(f, options=list(n=10, nev=2, ncv=4), sym=TRUE)

Graph laplacian of a star graph (undirected), n>=2
Note that this is a linear operation
f <- function(x, extra=NULL) {

y <- X

y[1] <= (length(x)-1)*x[1] - sum(x[-1])

for (i in 2:length(x)) {

y[il <- x[i] - x[1]

}

y
3
arpack(f, options=list(n=10, nev=1, ncv=3), sym=TRUE)

double check
eigen(laplacian_matrix(make_star (10, mode="undirected")))

First three eigenvalues of the adjacency matrix of a graph
We need the 'Matrix' package for this
if (require(Matrix)) {
set.seed(42)
g <- sample_gnp(1000, 5/1000)
M <- as_adj(g, sparse=TRUE)
f2 <- function(x, extra=NULL) { cat("."); as.vector(M %*% x) }
baev <- arpack(f2, sym=TRUE, options=list(n=vcount(g), nev=3, ncv=8,
which="LM", maxiter=2000))

articulation_points Articulation points of a graph

Description

Articuation points or cut vertices are vertices whose removal increases the number of connected
components in a graph.

http://www.caam.rice.edu/software/ARPACK/
http://www.caam.rice.edu/software/ARPACK/

28 as.directed

Usage

articulation_points(graph)

Arguments

graph The input graph. It is treated as an undirected graph, even if it is directed.

Details

Articuation points or cut vertices are vertices whose removal increases the number of connected
components in a graph. If the original graph was connected, then the removal of a single articulation
point makes it undirected. If a graph contains no articulation points, then its vertex connectivity is
at least two.

Value

A numeric vector giving the vertex ids of the articulation points of the input graph.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

See Also

biconnected_components, components, is_connected, vertex_connectivity

Examples

g <- disjoint_union(make_full_graph(5), make_full_graph(5))
clu <- components(g)$membership

g <- add_edges(g, c(match(1, clu), match(2, clu)))
articulation_points(g)

as.directed Convert between directed and undirected graphs

Description

as.directed converts an undirected graph to directed, as.undirected does the opposite, it con-
verts a directed graph to undirected.

Usage

as.directed(graph, mode = c("mutual”, "arbitrary”))

as.undirected(
graph,
mode = c("collapse”, "each”, "mutual”),
edge.attr.comb = igraph_opt("edge.attr.comb")
)

as.directed 29

Arguments
graph The graph to convert.
mode Character constant, defines the conversion algorithm. For as.directed it can

be mutual or arbitrary. For as.undirected it can be each, collapse or
mutual. See details below.

edge.attr.comb Specifies what to do with edge attributes, if mode="collapse” or mode="mutual”.
In these cases many edges might be mapped to a single one in the new graph, and
their attributes are combined. Please see attribute.combination for details
on this.

Details
Conversion algorithms for as.directed:
"arbitrary' The number of edges in the graph stays the same, an arbitrarily directed edge is cre-
ated for each undirected edge.

"mutual" Two directed edges are created for each undirected edge, one in each direction.
Conversion algorithms for as.undirected:
"each' The number of edges remains constant, an undirected edge is created for each directed one,

this version might create graphs with multiple edges.

""collapse' One undirected edge will be created for each pair of vertices which are connected with
at least one directed edge, no multiple edges will be created.

""mutual" One undirected edge will be created for each pair of mutual edges. Non-mutual edges
are ignored. This mode might create multiple edges if there are more than one mutual edge
pairs between the same pair of vertices.

Value

A new graph object.

Author(s)

Gabor Csardi <csardi .gabor@gmail . com>

See Also

simplify for removing multiple and/or loop edges from a graph.

Examples

g <- make_ring(10)
as.directed(g, "mutual”)
g2 <- make_star(10)
as.undirected(g)

Combining edge attributes
g3 <- make_ring(10, directed=TRUE, mutual=TRUE)
E(g3)$weight <- seq_len(ecount(g3))
ug3 <- as.undirected(g3)
print(ug3, e=TRUE)
Not run:
x11(width=10, height=5)

30 as.igraph

layout(rbind(1:2))
plot(g3, layout=layout_in_circle, edge.label=E(g3)$weight)
plot(ug3, layout=layout_in_circle, edge.label=E(ug3)$weight)

End(Not run)

g4 <- graph(c(1,2, 3,2,3,4,3,4, 5,4,5,4
6,7, 7,6,7,8,7,8, 8,7,8,9
9,8,9,8,9,9, 10,10,10,10)

E(g4)$weight <- seq_len(ecount(g4))

ug4 <- as.undirected(g4, mode="mutual”,
edge.attr.comb=1list(weight=length))

print(ug4, e=TRUE)

’8!9’
)

as.igraph Conversion to igraph

Description

These functions convert various objects to igraph graphs.

Usage
as.igraph(x, ...)
Arguments
X The object to convert.
Additional arguments. None currently.
Details

You can use as. igraph to convert various objects to igraph graphs. Right now the following objects
are supported:

 codeigraphHRG These objects are created by the fit_hrg and consensus_tree functions.

Value

All these functions return an igraph graph.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>.

Examples

g <- make_full_graph(5) + make_full_graph(5)
hrg <- fit_hrg(g)
as.igraph(hrg)

as_adj_list 31

as_adj_list Adjacency lists

Description

Create adjacency lists from a graph, either for adjacent edges or for neighboring vertices

Usage

as_adj_list(graph, mode = c("all”, "out”, "in", "total"))

as_adj_edge_list(graph, mode = c("all”, "out”, "in", "total"))

Arguments
graph The input graph.
mode Character scalar, it gives what kind of adjacent edges/vertices to include in the
lists. ‘out’ is for outgoing edges/vertices, ‘in’ is for incoming edges/vertices,
‘all’ is for both. This argument is ignored for undirected graphs.
Details

as_adj_list returns a list of numeric vectors, which include the ids of neighbor vertices (according
to the mode argument) of all vertices.

as_adj_edge_list returns a list of numeric vectors, which include the ids of adjacent edgs (ac-
cording to the mode argument) of all vertices.
Value

A list of numeric vectors.

Author(s)

Gabor Csardi <csardi . gabor@gmail . com>

See Also

as_edgelist, as_adj

Examples

g <- make_ring(10)
as_adj_list(g)
as_adj_edge_list(g)

32

as_adjacency_matrix

as_adjacency_matrix Convert a graph to an adjacency matrix

Description

Sometimes it is useful to work with a standard representation of a graph, like an adjacency matrix.

Usage

as_adjacency_matrix(

graph,

type = c("both”, "upper"”, "lower"),

attr = NULL,

edges = FALSE,

names = TRUE,

sparse = igraph_opt("sparsematrices”)

as_adj(
graph,

type = c("both”, "upper”, "lower"),

attr = NULL,

edges = FALSE,

names = TRUE,

sparse = igraph_opt("”sparsematrices"”)

Arguments
graph
type

attr

edges

names

sparse

The graph to convert.

Gives how to create the adjacency matrix for undirected graphs. It is ignored for
directed graphs. Possible values: upper: the upper right triangle of the matrix
is used, lower: the lower left triangle of the matrix is used. both: the whole
matrix is used, a symmetric matrix is returned.

Either NULL or a character string giving an edge attribute name. If NULL a tra-
ditional adjacency matrix is returned. If not NULL then the values of the given
edge attribute are included in the adjacency matrix. If the graph has multiple
edges, the edge attribute of an arbitrarily chosen edge (for the multiple edges) is
included. This argument is ignored if edges is TRUE.

Note that this works only for certain attribute types. If the sparse argumen
is TRUE, then the attribute must be either logical or numeric. If the sparse
argument is FALSE, then character is also allowed. The reason for the difference
is that the Matrix package does not support character sparse matrices yet.

Logical scalar, whether to return the edge ids in the matrix. For non-existant
edges zero is returned.

Logical constant, whether to assign row and column names to the matrix. These
are only assigned if the name vertex attribute is present in the graph.

Logical scalar, whether to create a sparse matrix. The ‘Matrix’ package must
be installed for creating sparse matrices.

as_data_frame

Details

33

as_adjacency_matrix returns the adjacency matrix of a graph, a regular matrix if sparse is FALSE,
or a sparse matrix, as defined in the ‘Matrix’ package, if sparse if TRUE.

Value

A vcount(graph) by vcount(graph) (usually) numeric matrix.

See Also

graph_from_adjacency_matrix, read_graph

Examples

g <- sample_gnp(10, 2/10)
as_adjacency_matrix(g)

V(g)$name <- letters[1:vcount(g)]
as_adjacency_matrix(g)

E(g)$weight <- runif(ecount(g))
as_adjacency_matrix(g, attr="weight")

as_data_frame

Creating igraph graphs from data frames or vice-versa

Description

This function creates an igraph graph from one or two data frames containing the (symbolic) edge
list and edge/vertex attributes.

Usage

as_data_frame(x, what = c("edges"”, "vertices"”, "both"))

graph_from_data_frame(d, directed = TRUE, vertices = NULL)

from_data_frame(...)

Arguments

X

what

directed

vertices

An igraph object.

Character constant, whether to return info about vertices, edges, or both. The
default is ‘edges’.

A data frame containing a symbolic edge list in the first two columns. Additional
columns are considered as edge attributes. Since version 0.7 this argument is
coerced to a data frame with as.data. frame.

Logical scalar, whether or not to create a directed graph.

A data frame with vertex metadata, or NULL. See details below. Since version
0.7 this argument is coerced to a data frame with as.data. frame, if not NULL.

Passed to graph_from_data_frame.

34 as_data_frame

Details

graph_from_data_frame creates igraph graphs from one or two data frames. It has two modes of
operation, depending whether the vertices argument is NULL or not.

If vertices is NULL, then the first two columns of d are used as a symbolic edge list and additional
columns as edge attributes. The names of the attributes are taken from the names of the columns.

If vertices is not NULL, then it must be a data frame giving vertex metadata. The first column
of vertices is assumed to contain symbolic vertex names, this will be added to the graphs as the
‘name’ vertex attribute. Other columns will be added as additional vertex attributes. If vertices
is not NULL then the symbolic edge list given in d is checked to contain only vertex names listed in
vertices.

Typically, the data frames are exported from some spreadsheet software like Excel and are imported
into R via read. table, read.delimor read.csv.

All edges in the data frame are included in the graph, which may include multiple parallel edges
and loops.

as_data_frame converts the igraph graph into one or more data frames, depending on the what
argument.

If the what argument is edges (the default), then the edges of the graph and also the edge attributes
are returned. The edges will be in the first two columns, named from and to. (This also denotes
edge direction for directed graphs.) For named graphs, the vertex names will be included in these
columns, for other graphs, the numeric vertex ids. The edge attributes will be in the other columns.
It is not a good idea to have an edge attribute named from or to, because then the column named in
the data frame will not be unique. The edges are listed in the order of their numeric ids.

If the what argument is vertices, then vertex attributes are returned. Vertices are listed in the order
of their numeric vertex ids.

If the what argument is both, then both vertex and edge data is returned, in a list with named entries
vertices and edges.

Value

An igraph graph object for graph_from_data_frame, and either a data frame or a list of two data
frames named edges and vertices for as.data. frame.

Note

For graph_from_data_frame NA elements in the first two columns ‘d’ are replaced by the string
“NA” before creating the graph. This means that all NAs will correspond to a single vertex.

NA elements in the first column of ‘vertices’ are also replaced by the string “NA”, but the rest of
‘vertices’ is not touched. In other words, vertex names (=the first column) cannot be NA, but other
vertex attributes can.

Author(s)

Gabor Csardi <csardi.gabor@gmail . com>

See Also

graph_from_literal for another way to create graphs, read. table to read in tables from files.

as_edgelist 35

Examples

A simple example with a couple of actors
The typical case is that these tables are read in from files....
actors <- data.frame(name=c("Alice", "Bob", "Cecil”, "David",
"Esmeralda"),
age=c(48,33,45,34,21),
gender=c("F","M","F" "M","F"))
relations <- data.frame(from=c("Bob”, "Cecil"”, "Cecil”, "David",
"David"”, "Esmeralda"),
to=c("Alice"”, "Bob", "Alice", "Alice"”, "Bob", "Alice"),
same.dept=c(FALSE,FALSE, TRUE,FALSE,FALSE,TRUE),
friendship=c(4,5,5,2,1,1), advice=c(4,5,5,4,2,3))
g <- graph_from_data_frame(relations, directed=TRUE, vertices=actors)
print(g, e=TRUE, v=TRUE)

The opposite operation
as_data_frame(g, what="vertices")
as_data_frame(g, what="edges")

as_edgelist Convert a graph to an edge list

Description

Sometimes it is useful to work with a standard representation of a graph, like an edge list.

Usage

as_edgelist(graph, names = TRUE)

Arguments
graph The graph to convert.
names Whether to return a character matrix containing vertex names (ie. the name
vertex attribute) if they exist or numeric vertex ids.
Details

as_edgelist returns the list of edges in a graph.

Value

A gsize(graph) by 2 numeric matrix.

See Also

graph_from_adjacency_matrix, read_graph

36 as_graphnel

Examples

g <- sample_gnp(10, 2/10)
as_edgelist(g)

V(g)$name <- LETTERS[seq_len(gorder(g))]
as_edgelist(g)

as_graphnel Convert igraph graphs to graphNEL objects from the graph package

Description

The graphNEL class is defined in the graph package, it is another way to represent graphs. These
functions are provided to convert between the igraph and the graphNEL objects.

Usage
as_graphnel (graph)

Arguments

graph An igraph graph object.

Details

as_graphnel converts an igraph graph to a graphNEL graph. It converts all graph/vertex/edge
attributes. If the igraph graph has a vertex attribute ‘name’, then it will be used to assign vertex
names in the graphNEL graph. Otherwise numeric igraph vertex ids will be used for this purpose.

Value

as_graphnel returns a graphNEL graph object.

See Also

graph_from_graphnel for the other direction, as_adj, graph_from_adjacency_matrix, as_adj_list
and graph.adjlist for other graph representations.

Examples

Undirected

Not run:

g <- make_ring(10)

V(g)$name <- letters[1:10]
GNEL <- as_graphnel(g)

g2 <- graph_from_graphnel (GNEL)
g2

Directed

g3 <- make_star(10, mode="in")
V(g3)$name <- letters[1:10]
GNEL2 <- as_graphnel(g3)

as_ids 37

g4 <- graph_from_graphnel (GNEL2)
g4

End(Not run)

as_ids Convert a vertex or edge sequence to an ordinary vector

Description

Convert a vertex or edge sequence to an ordinary vector

Usage

as_ids(seq)

S3 method for class 'igraph.vs'
as_ids(seq)

S3 method for class 'igraph.es'
as_ids(seq)

Arguments

seq The vertex or edge sequence.

Details

For graphs without names, a numeric vector is returned, containing the internal numeric vertex or
edge ids.

For graphs with names, and vertex sequences, the vertex names are returned in a character vector.

For graphs with names and edge sequences, a character vector is returned, with the ‘bar’ notation:
a|b means an edge from vertex a to vertex b.

Value

A character or numeric vector, see details below.

Examples

g <- make_ring(10)
as_ids(V(g))
as_ids(E(g))

V(g)$name <- letters[1:10]
as_ids(V(g))
as_ids(E(g))

38 as_incidence_matrix

as_incidence_matrix Incidence matrix of a bipartite graph

Description

This function can return a sparse or dense incidence matrix of a bipartite network. The incidence
matrix is an n times m matrix, n and m are the number of vertices of the two kinds.

Usage
as_incidence_matrix(
graph,
types = NULL,
attr = NULL,
names = TRUE,
sparse = FALSE
)
Arguments
graph The input graph. The direction of the edges is ignored in directed graphs.
types An optional vertex type vector to use instead of the type vertex attribute. You
must supply this argument if the graph has no type vertex attribute.
attr Either NULL or a character string giving an edge attribute name. If NULL, then a
traditional incidence matrix is returned. If not NULL then the values of the given
edge attribute are included in the incidence matrix. If the graph has multiple
edges, the edge attribute of an arbitrarily chosen edge (for the multiple edges) is
included.
names Logical scalar, if TRUE and the vertices in the graph are named (i.e. the graph
has a vertex attribute called name), then vertex names will be added to the result
as row and column names. Otherwise the ids of the vertices are used as row and
column names.
sparse Logical scalar, if it is TRUE then a sparse matrix is created, you will need the
Matrix package for this.
Details

Bipartite graphs have a type vertex attribute in igraph, this is boolean and FALSE for the vertices of
the first kind and TRUE for vertices of the second kind.

Value

A sparse or dense matrix.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

See Also

graph_from_incidence_matrix for the opposite operation.

as_long_data_frame 39

Examples

g <- make_bipartite_graph(c(0,1,0,1,0,0), c(1,2,2,3,3,4))
as_incidence_matrix(g)

as_long_data_frame Convert a graph to a long data frame

Description

A long data frame contains all metadata about both the vertices and edges of the graph. It contains
one row for each edge, and all metadata about that edge and its incident vertices are included in that
row. The names of the columns that contain the metadata of the incident vertices are prefixed with
from_ and to_. The first two columns are always named from and to and they contain the numeric
ids of the incident vertices. The rows are listed in the order of numeric vertex ids.

Usage

as_long_data_frame(graph)

Arguments

graph Input graph

Value

A long data frame.

Examples

g <- make_(ring(10),

with_vertex_(name = letters[1:10], color = "red"),
with_edge_(weight = 1:10, color = "green")
)
as_long_data_frame(g)
as_membership Declare a numeric vector as a membership vector

Description
This is useful if you want to use functions defined on membership vectors, but your membership
vector does not come from an igraph clustering method.

Usage

as_membership(x)

Arguments

X The input vector.

40 assortativity

Value

The input vector, with the membership class added.

Examples

Compare to the correct clustering

g <- (make_full_graph(10) + make_full_graph(10)) %>%
rewire(each_edge(p = 0.2))

correct <- rep(1:2, each = 10) %>% as_membership

fc <- cluster_fast_greedy(g)

compare(correct, fc)

compare(correct, membership(fc))

assortativity Assortativity coefficient

Description

The assortativity coefficient is positive is similar vertices (based on some external property) tend to
connect to each, and negative otherwise.

Usage
assortativity(graph, typesl, types2 = NULL, directed = TRUE)
assortativity_nominal(graph, types, directed = TRUE)

assortativity_degree(graph, directed = TRUE)

Arguments
graph The input graph, it can be directed or undirected.
types1 The vertex values, these can be arbitrary numeric values.
types2 A second value vector to be using for the incoming edges when calculating as-
sortativity for a directed graph. Supply NULL here if you want to use the same
values for outgoing and incoming edges. This argument is ignored (with a warn-
ing) if it is not NULL and undirected assortativity coefficient is being calculated.
directed Logical scalar, whether to consider edge directions for directed graphs. This
argument is ignored for undirected graphs. Supply TRUE here to do the natu-
ral thing, i.e. use directed version of the measure for directed graphs and the
undirected version for undirected graphs.
types Vector giving the vertex types. They as assumed to be integer numbers, starting
with one. Non-integer values are converted to integers with as. integer.
Details

The assortativity coefficient measures the level of homophyly of the graph, based on some vertex
labeling or values assigned to vertices. If the coefficient is high, that means that connected vertices
tend to have the same labels or similar assigned values.

assortativity 41

M.E.J. Newman defined two kinds of assortativity coefficients, the first one is for categorical labels
of vertices. assortativity_nominal calculates this measure. It is defines as

Zi €ii — Zi a;b;
rr =
1-— Zl Cl,'bi

where e;; is the fraction of edges connecting vertices of type ¢ and j, a; = > j €ij and b; = Zi €;j-

The second assortativity variant is based on values assigned to the vertices. assortativity calcu-
lates this measure. It is defined as

1 .
=3 > ik(eir — qian)
4 5k

for undirected graphs (¢; = ; €ij) and as

> jk(en — q743)

for directed ones. Here ¢y = Z j €ij» q} => j €ji> Moreover, oq, sigma, and stgma,; are the
standard deviations of ¢, ¢° and ¢*, respectively.

The reason of the difference is that in directed networks the relationship is not symmetric, so it is
possible to assign different values to the outgoing and the incoming end of the edges.

assortativity_degree uses vertex degree (minus one) as vertex values and calls assortativity.

Value

A single real number.

Author(s)

Gabor Csardi <csardi.gabor@gmail . com>

References

M. E. J. Newman: Mixing patterns in networks, Phys. Rev. E 67, 026126 (2003) https://arxiv.
org/abs/cond-mat/0209450

M. E. J. Newman: Assortative mixing in networks, Phys. Rev. Lett. 89, 208701 (2002) https:
//arxiv.org/abs/cond-mat/0205405

Examples

random network, close to zero
assortativity_degree(sample_gnp(10000, 3/10000))

BA model, tends to be dissortative
assortativity_degree(sample_pa(10000, m=4))

https://arxiv.org/abs/cond-mat/0209450
https://arxiv.org/abs/cond-mat/0209450
https://arxiv.org/abs/cond-mat/0205405
https://arxiv.org/abs/cond-mat/0205405

42 authority_score

authority_score Kleinberg’s authority centrality scores.

Description

The authority scores of the vertices are defined as the principal eigenvector of AT A, where A is the
adjacency matrix of the graph.

Usage

authority_score(graph, scale = TRUE, weights = NULL, options = arpack_defaults)

Arguments
graph The input graph.
scale Logical scalar, whether to scale the result to have a maximum score of one. If
no scaling is used then the result vector has unit length in the Euclidean norm.
weights Optional positive weight vector for calculating weighted scores. If the graph
has a weight edge attribute, then this is used by default. This function interprets
edge weights as connection strengths. In the random surfer model, an edge with
a larger weight is more likely to be selected by the surfer.
options A named list, to override some ARPACK options. See arpack for details.
Details

For undirected matrices the adjacency matrix is symmetric and the authority scores are the same as
hub scores, see hub_score.

Value

A named list with members:

vector The authority/hub scores of the vertices.
value The corresponding eigenvalue of the calculated principal eigenvector.
options Some information about the ARPACK computation, it has the same members as

the options member returned by arpack, see that for documentation.

References

J. Kleinberg. Authoritative sources in a hyperlinked environment. Proc. 9th ACM-SIAM Symposium
on Discrete Algorithms, 1998. Extended version in Journal of the ACM 46(1999). Also appears as
IBM Research Report RJ 10076, May 1997.

See Also

hub_score, eigen_centrality for eigenvector centrality, page_rank for the Page Rank scores.
arpack for the underlining machinery of the computation.

automorphisms 43

Examples

An in-star

g <- make_star(10)
hub_score(g)$vector
authority_score(g)$vector

A ring

g2 <- make_ring(10)
hub_score(g2)$vector
authority_score(g2)$vector

automorphisms Number of automorphisms

Description

Calculate the number of automorphisms of a graph, i.e. the number of isomorphisms to itself.

Usage
automorphisms(graph, sh = "fm")
Arguments
graph The input graph, it is treated as undirected.
sh The splitting heuristics for the BLISS algorithm. Possible values are: ‘f’: first
non-singleton cell, ‘f1’: first largest non-singleton cell, ‘f's’: first smallest non-
singleton cell, ‘fm’: first maximally non-trivially connected non-singleton cell,
“f1lm’: first largest maximally non-trivially connected non-singleton cell, ‘fsm’:
first smallest maximally non-trivially connected non-singleton cell.
Details

An automorphism of a graph is a permutation of its vertices which brings the graph into itself.

This function calculates the number of automorphism of a graph using the BLISS algorithm. See
also the BLISS homepage at http://www.tcs.hut.fi/Software/bliss/index.html.

Value

A named list with the following members:

group_size The size of the automorphism group of the input graph, as a string. This number
is exact if igraph was compiled with the GMP library, and approximate other-
wise.

nof_nodes The number of nodes in the search tree.

nof_leaf_nodes The number of leaf nodes in the search tree.
nof_bad_nodes Number of bad nodes.
nof_canupdates Number of canrep updates.

max_level Maximum level.

http://www.tcs.hut.fi/Software/bliss/index.html

44 bfs

Author(s)

Tommi Junttila (http://users.ics.aalto.fi/tjunttil/) for BLISS and Gabor Csardi <csardi.gabor@gmail.com>
for the igraph glue code and this manual page.

References

Tommi Junttila and Petteri Kaski: Engineering an Efficient Canonical Labeling Tool for Large and
Sparse Graphs, Proceedings of the Ninth Workshop on Algorithm Engineering and Experiments and
the Fourth Workshop on Analytic Algorithms and Combinatorics. 2007.

See Also

canonical_permutation, permute

Examples

A ring has n*2 automorphisms, you can "turn” it by 0-9 vertices
and each of these graphs can be "flipped”

g <- make_ring(10)

automorphisms(g)

bfs Breadth-first search

Description

Breadth-first search is an algorithm to traverse a graph. We start from a root vertex and spread along
every edge “simultaneously”.

Usage

bfs(
graph,
root,
neimode = c("out”, "in", "all", "total"),
unreachable = TRUE,
restricted = NULL,

order = TRUE,
rank = FALSE,
father = FALSE,
pred = FALSE,
succ = FALSE,
dist = FALSE,
callback = NULL,
extra = NULL,

rho = parent.frame()

http://users.ics.aalto.fi/tjunttil/

Arguments

graph

root

neimode

unreachable

restricted

order
rank
father
pred
succ
dist
callback

extra

rho

Details

45

The input graph.

Numeric vector, usually of length one. The root vertex, or root vertices to start
the search from.

For directed graphs specifies the type of edges to follow. ‘out’ follows outgo-
ing, ‘in’ incoming edges. ‘all’ ignores edge directions completely. ‘total’ is a
synonym for ‘all’. This argument is ignored for undirected graphs.

Logical scalar, whether the search should visit the vertices that are unreachable
from the given root vertex (or vertices). If TRUE, then additional searches are
performed until all vertices are visited.

NULL (=no restriction), or a vector of vertices (ids or symbolic names). In the
latter case, the search is restricted to the given vertices.

Logical scalar, whether to return the ordering of the vertices.

Logical scalar, whether to return the rank of the vertices.

Logical scalar, whether to return the father of the vertices.

Logical scalar, whether to return the predecessors of the vertices.

Logical scalar, whether to return the successors of the vertices.

Logical scalar, whether to return the distance from the root of the search tree.

If not NULL, then it must be callback function. This is called whenever a vertex
is visited. See details below.

Additional argument to supply to the callback function.

The environment in which the callback function is evaluated.

The callback function must have the following arguments:

graph The input graph is passed to the callback function here.

data A named numeric vector, with the following entries: ‘vid’, the vertex that was just visited,
‘pred’, its predecessor, ‘succ’, its successor, ‘rank’, the rank of the current vertex, ‘dist’, its
distance from the root of the search tree.

extra The extra argument.

See examples below on how to use the callback function.

Value

A named list with the following entries:

root

neimode

order

rank
father
pred

Numeric scalar. The root vertex that was used as the starting point of the search.

Character scalar. The neimode argument of the function call. Note that for
undirected graphs this is always ‘all’, irrespectively of the supplied value.

Numeric vector. The vertex ids, in the order in which they were visited by the
search.

Numeric vector. The rank for each vertex.
Numeric vector. The father of each vertex, i.e. the vertex it was discovered from.

Numeric vector. The previously visited vertex for each vertex, or O if there was
no such vertex.

46 biconnected_components

succ Numeric vector. The next vertex that was visited after the current one, or O if
there was no such vertex.

dist Numeric vector, for each vertex its distance from the root of the search tree.

Note that order, rank, father, pred, succ and dist might be NULL if their corresponding argument
is FALSE, i.e. if their calculation is not requested.

Author(s)

Gabor Csardi <csardi . gabor@gmail . com>

See Also
df's for depth-first search.

Examples

Two rings

bfs(make_ring(10) %du% make_ring(10), root=1, "out",
order=TRUE, rank=TRUE, father=TRUE, pred=TRUE,
succ=TRUE, dist=TRUE)

How to use a callback
f <- function(graph, data, extra) {
print(data)
FALSE
3
tmp <- bfs(make_ring(10) %du% make_ring(1@), root=1, "out",
callback=f)

How to use a callback to stop the search

We stop after visiting all vertices in the initial component
f <- function(graph, data, extra) {

datal'succ'] == -1

3

bfs(make_ring(10) %du% make_ring(10), root=1, callback=f)

biconnected_components
Biconnected components

Description

Finding the biconnected components of a graph

Usage

biconnected_components(graph)

Arguments

graph The input graph. It is treated as an undirected graph, even if it is directed.

bipartite_mapping 47

Details

A graph is biconnected if the removal of any single vertex (and its adjacent edges) does not discon-
nect it.

A biconnected component of a graph is a maximal biconnected subgraph of it. The biconnected
components of a graph can be given by the partition of its edges: every edge is a member of exactly
one biconnected component. Note that this is not true for vertices: the same vertex can be part of
many biconnected components.

Value

A named list with three components:

no Numeric scalar, an integer giving the number of biconnected components in the
graph.
tree_edges The components themselves, a list of numeric vectors. Each vector is a set of

edge ids giving the edges in a biconnected component. These edges define a
spanning tree of the component.

component_edges
A list of numeric vectors. It gives all edges in the components.

components A list of numeric vectors, the vertices of the components.
articulation_points
The articulation points of the graph. See articulation_points.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

See Also

articulation_points, components, is_connected, vertex_connectivity

Examples

g <- disjoint_union(make_full_graph(5), make_full_graph(5))
clu <- components(g)$membership

g <- add_edges(g, c(which(clu==1), which(clu==2)))

bc <- biconnected_components(g)

bipartite_mapping Decide whether a graph is bipartite

Description
This function decides whether the vertices of a network can be mapped to two vertex types in a way
that no vertices of the same type are connected.

Usage

bipartite_mapping(graph)

48 bipartite_projection

Arguments

graph The input graph.

Details

A bipartite graph in igraph has a ‘type’ vertex attribute giving the two vertex types.

This function simply checks whether a graph could be bipartite. It tries to find a mapping that gives
a possible division of the vertices into two classes, such that no two vertices of the same class are
connected by an edge.

The existence of such a mapping is equivalent of having no circuits of odd length in the graph. A
graph with loop edges cannot bipartite.

Note that the mapping is not necessarily unique, e.g. if the graph has at least two components, then
the vertices in the separate components can be mapped independently.

Value

A named list with two elements:

res A logical scalar, TRUE if the can be bipartite, FALSE otherwise.

type A possibly vertex type mapping, a logical vector. If no such mapping exists,
then an empty vector.

Author(s)

Gabor Csardi <csardi . gabor@gmail . com>

Examples

A ring has just one loop, so it is fine
g <- make_ring(10)
bipartite_mapping(g)

A star is fine, too
g2 <- make_star(10)
bipartite_mapping(g2)

A graph containing a triangle is not fine
g3 <- make_ring(10)

g3 <- add_edges(g3, c(1,3))
bipartite_mapping(g3)

bipartite_projection Project a bipartite graph

Description

A bipartite graph is projected into two one-mode networks

bipartite_projection 49

Usage
bipartite_projection(
graph,
types = NULL,

multiplicity = TRUE,

probel = NULL,

which = c("both”, "true”, "false"),
remove.type = TRUE

)
Arguments
graph The input graph. It can be directed, but edge directions are ignored during the
computation.
types An optional vertex type vector to use instead of the ‘type’ vertex attribute. You

must supply this argument if the graph has no ‘type’ vertex attribute.

multiplicity If TRUE, then igraph keeps the multiplicity of the edges as an edge attribute called
‘weight’. E.g. if there is an A-C-B and also an A-D-B triple in the bipartite graph
(but no more X, such that A-X-B is also in the graph), then the multiplicity of
the A-B edge in the projection will be 2.

probe This argument can be used to specify the order of the projections in the resulting
list. If given, then it is considered as a vertex id (or a symbolic vertex name);
the projection containing this vertex will be the first one in the result list. This
argument is ignored if only one projection is requested in argument which.

which A character scalar to specify which projection(s) to calculate. The default is to
calculate both.

remove. type Logical scalar, whether to remove the type vertex attribute from the projections.
This makes sense because these graphs are not bipartite any more. However if
you want to combine them with each other (or other bipartite graphs), then it is
worth keeping this attribute. By default it will be removed.

Details

Bipartite graphs have a type vertex attribute in igraph, this is boolean and FALSE for the vertices of
the first kind and TRUE for vertices of the second kind.

bipartite_projection_size calculates the number of vertices and edges in the two projections
of the bipartite graphs, without calculating the projections themselves. This is useful to check how
much memory the projections would need if you have a large bipartite graph.

bipartite_projection calculates the actual projections. You can use the probel argument to
specify the order of the projections in the result. By default vertex type FALSE is the first and TRUE
is the second.

bipartite_projection keeps vertex attributes.

Value

A list of two undirected graphs. See details above.

Author(s)

Gabor Csardi <csardi.gabor@gmail . com>

50 c.igraph.es

Examples

Projection of a full bipartite graph is a full graph
g <- make_full_bipartite_graph(10,5)

proj <- bipartite_projection(g)
graph.isomorphic(proj[[1]1], make_full_graph(10))
graph.isomorphic(proj[[2]], make_full_graph(5))

The projection keeps the vertex attributes

M <- matrix(@, nr=5, nc=3)

rownames(M) <- c("Alice”, "Bob"”, "Cecil”, "Dan", "Ethel”)
colnames(M) <- c("Party”, "Skiing"”, "Badminton")
ML] <- sample(@:1, length(M), replace=TRUE)

M

g2 <- graph_from_incidence_matrix(M)

g2%name <- "Event network”

proj2 <- bipartite_projection(g2)
print(proj2[[1]], g=TRUE, e=TRUE)
print(proj2[[2]], g=TRUE, e=TRUE)

c.igraph.es Concatenate edge sequences

Description

Concatenate edge sequences

Usage
S3 method for class 'igraph.es'
c(..., recursive = FALSE)
Arguments

The edge sequences to concatenate. They must all refer to the same graph.

recursive Ignored, included for S3 compatibility with the base c function.

Value

An edge sequence, the input sequences concatenated.

See Also

Other vertex and edge sequence operations: c.igraph.vs(), difference.igraph.es(),difference.igraph.vs(),
igraph-es-indexing2, igraph-es-indexing, igraph-vs-indexing2, igraph-vs-indexing, intersection.igrap
intersection.igraph.vs(), rev.igraph.es(), rev.igraph.vs(),union.igraph.es(),union.igraph.vs(),

unique.igraph.es(), unique.igraph.vs()

Examples

g <- make_(ring(10), with_vertex_(name = LETTERS[1:10]))
c(E(g)[1]1, E(g)['AIB'], E(g)[1:4D)

c.igraph.vs 51

c.igraph.vs Concatenate vertex sequences

Description

Concatenate vertex sequences

Usage
S3 method for class 'igraph.vs'
c(..., recursive = FALSE)
Arguments

The vertex sequences to concatenate. They must refer to the same graph.

recursive Ignored, included for S3 compatibility with the base c function.

Value

A vertex sequence, the input sequences concatenated.

See Also

Other vertex and edge sequence operations: c.igraph.es(),difference.igraph.es(),difference.igraph.vs(),
igraph-es-indexing?2, igraph-es-indexing, igraph-vs-indexing2, igraph-vs-indexing, intersection.igrap
intersection.igraph.vs(), rev.igraph.es(), rev.igraph.vs(),union.igraph.es(),union.igraph.vs(),
unique.igraph.es(), unique.igraph.vs()

Examples

g <- make_(ring(10), with_vertex_(name = LETTERS[1:10]))
c(V(g)[1], V(g)L'A'], V(g)[1:4D)

canonical_permutation Canonical permutation of a graph

Description

The canonical permutation brings every isomorphic graphs into the same (labeled) graph.

Usage
canonical_permutation(graph, sh = "fm")
Arguments
graph The input graph, treated as undirected.
sh Type of the heuristics to use for the BLISS algorithm. See details for possible

values.

52 canonical_permutation

Details

canonical_permutation computes a permutation which brings the graph into canonical form, as
defined by the BLISS algorithm. All isomorphic graphs have the same canonical form.

See the paper below for the details about BLISS. This and more information is available at http:
//www. tcs.hut.fi/Software/bliss/index.html.

The possible values for the sh argument are:

"f"" First non-singleton cell.

"fI"" First largest non-singleton cell.

"fs'" First smallest non-singleton cell.

"fm" First maximally non-trivially connectec non-singleton cell.
"fim" Largest maximally non-trivially connected non-singleton cell.

"fsm'' Smallest maximally non-trivially connected non-singleton cell.

See the paper in references for details about these.

Value

A list with the following members:

labeling The canonical permutation which takes the input graph into canonical form. A
numeric vector, the first element is the new label of vertex 0, the second element
for vertex 1, etc.

info Some information about the BLISS computation. A named list with the follow-
ing members:
'""nof _nodes' The number of nodes in the search tree.
"nof_leaf nodes'' The number of leaf nodes in the search tree.
"nof _bad_nodes' Number of bad nodes.
'""nof_canupdates' Number of canrep updates.
"max_level" Maximum level.

"group_size'' The size of the automorphism group of the input graph, as a
string. This number is exact if igraph was compiled with the GMP library,
and approximate otherwise.

Author(s)
Tommi Junttila for BLISS, Gabor Csardi <csardi.gabor@gmail.com> for the igraph and R inter-
faces.

References

Tommi Junttila and Petteri Kaski: Engineering an Efficient Canonical Labeling Tool for Large and
Sparse Graphs, Proceedings of the Ninth Workshop on Algorithm Engineering and Experiments and
the Fourth Workshop on Analytic Algorithms and Combinatorics. 2007.

See Also

permute to apply a permutation to a graph, graph.isomorphic for deciding graph isomorphism,
possibly based on canonical labels.

http://www.tcs.hut.fi/Software/bliss/index.html
http://www.tcs.hut.fi/Software/bliss/index.html

categorical_pal 53

Examples

Calculate the canonical form of a random graph
gl <- sample_gnm(10, 20)

cpl <- canonical_permutation(gl)

cf1 <- permute(gl, cpl$labeling)

Do the same with a random permutation of it
g2 <- permute(gl, sample(vcount(gl)))

cp2 <- canonical_permutation(g2)

cf2 <- permute(g2, cp2$labeling)

Check that they are the same

ell <- as_edgelist(cf1)

el2 <- as_edgelist(cf2)

ell <- ell1[order(ell[,11, ell1[,21), 1
el2 <- el2[order(el2[,1], el2[,2]), 1]
all(ell == el2)

categorical_pal Palette for categories

Description

This is a color blind friendly palette from https://jfly.uni-koeln.de/color/. It has 8 colors.

Usage

categorical_pal(n)

Arguments
n The number of colors in the palette. We simply take the first n colors from the
total 8.
Details
This is the suggested palette for visualizations where vertex colors mark categories, e.g. community
membership.
Value

A character vector of RGB color codes.

Examples

library(igraphdata)

data(karate)

karate <- karate
add_layout_(with_fr())
set_vertex_attr("size", value = 10)

cl_k <- cluster_optimal(karate)

https://jfly.uni-koeln.de/color/

54 centr_betw

V(karate)$color <- membership(cl_k)
karate$palette <- categorical_pal(length(cl_k))
plot(karate)

See Also
Other palettes: diverging_pal(), r_pal(), sequential_pal()

centr_betw Centralize a graph according to the betweenness of vertices

Description

See centralize for a summary of graph centralization.

Usage
centr_betw(graph, directed = TRUE, nobigint = TRUE, normalized = TRUE)

Arguments
graph The input graph.
directed logical scalar, whether to use directed shortest paths for calculating between-
ness.
nobigint Logical scalar, whether to use big integers for the betweenness calculation. This
argument is passed to the betweenness function.
normalized Logical scalar. Whether to normalize the graph level centrality score by dividing
by the theoretical maximum.
Value

A named list with the following components:

res The node-level centrality scores.

centralization The graph level centrality index.

theoretical_max
The maximum theoretical graph level centralization score for a graph with the
given number of vertices, using the same parameters. If the normalized argu-
ment was TRUE, then the result was divided by this number.

See Also

Other centralization related: centr_betw_tmax(), centr_clo_tmax(), centr_clo(), centr_degree_tmax(),
centr_degree(), centr_eigen_tmax(), centr_eigen(), centralize()

Examples

A BA graph is quite centralized

g <- sample_pa(1000, m = 4)
centr_degree(g)$centralization

centr_clo(g, mode = "all")$centralization
centr_betw(g, directed = FALSE)$centralization
centr_eigen(g, directed = FALSE)$centralization

centr_betw_tmax 55

centr_betw_tmax Theoretical maximum for betweenness centralization

Description

See centralize for a summary of graph centralization.

Usage

centr_betw_tmax(graph = NULL, nodes = @, directed = TRUE)

Arguments
graph The input graph. It can also be NULL, if nodes is given.
nodes The number of vertices. This is ignored if the graph is given.
directed logical scalar, whether to use directed shortest paths for calculating between-
ness.
Value

Real scalar, the theoretical maximum (unnormalized) graph betweenness centrality score for graphs
with given order and other parameters.

See Also

Other centralization related: centr_betw(), centr_clo_tmax(), centr_clo(), centr_degree_tmax(),
centr_degree(), centr_eigen_tmax(), centr_eigen(), centralize()

Examples

A BA graph is quite centralized

g <- sample_pa(1000, m = 4)

centr_betw(g, normalized = FALSE)$centralization %>%
* /" (centr_betw_tmax(g))

centr_betw(g, normalized = TRUE)S$centralization

centr_clo Centralize a graph according to the closeness of vertices

Description

See centralize for a summary of graph centralization.

Usage

centr_clo(graph, mode = c("out”, "in", "all”, "total"), normalized = TRUE)

56 centr_clo_tmax

Arguments
graph The input graph.
mode This is the same as the mode argument of closeness.
normalized Logical scalar. Whether to normalize the graph level centrality score by dividing
by the theoretical maximum.
Value

A named list with the following components:

res The node-level centrality scores.

centralization The graph level centrality index.

theoretical_max
The maximum theoretical graph level centralization score for a graph with the
given number of vertices, using the same parameters. If the normalized argu-
ment was TRUE, then the result was divided by this number.

See Also

Other centralization related: centr_betw_tmax (), centr_betw(), centr_clo_tmax(), centr_degree_tmax(),
centr_degree(), centr_eigen_tmax(), centr_eigen(), centralize()

Examples

A BA graph is quite centralized

g <- sample_pa(1000, m = 4)
centr_degree(g)$centralization

centr_clo(g, mode = "all")$centralization
centr_betw(g, directed = FALSE)$centralization
centr_eigen(g, directed = FALSE)S$centralization

centr_clo_tmax Theoretical maximum for closeness centralization

Description

See centralize for a summary of graph centralization.

Usage

centr_clo_tmax(graph = NULL, nodes = @, mode = c("out”, "in", "all”, "total"))

Arguments
graph The input graph. It can also be NULL, if nodes is given.
nodes The number of vertices. This is ignored if the graph is given.
mode This is the same as the mode argument of closeness.

Value

Real scalar, the theoretical maximum (unnormalized) graph closeness centrality score for graphs
with given order and other parameters.

centr_degree 57

See Also

Other centralization related: centr_betw_tmax (), centr_betw(), centr_clo(), centr_degree_tmax(),
centr_degree(), centr_eigen_tmax(), centr_eigen(), centralize()

Examples

A BA graph is quite centralized

g <- sample_pa(1000, m = 4)

centr_clo(g, normalized = FALSE)$centralization %>%
*/" (centr_clo_tmax(g))

centr_clo(g, normalized = TRUE)$centralization

centr_degree Centralize a graph according to the degrees of vertices

Description

See centralize for a summary of graph centralization.

Usage
centr_degree(
graph,
mode = c("all”, "out”, "in", "total"),
loops = TRUE,
normalized = TRUE
)
Arguments
graph The input graph.
mode This is the same as the mode argument of degree.
loops Logical scalar, whether to consider loops edges when calculating the degree.
normalized Logical scalar. Whether to normalize the graph level centrality score by dividing
by the theoretical maximum.
Value

A named list with the following components:

res The node-level centrality scores.

centralization The graph level centrality index.

theoretical_max
The maximum theoretical graph level centralization score for a graph with the
given number of vertices, using the same parameters. If the normalized argu-
ment was TRUE, then the result was divided by this number.

See Also

Other centralization related: centr_betw_tmax (), centr_betw(), centr_clo_tmax(), centr_clo(),
centr_degree_tmax (), centr_eigen_tmax(), centr_eigen(), centralize()

58 centr_degree_tmax

Examples

A BA graph is quite centralized

g <- sample_pa(1000, m = 4)
centr_degree(g)$centralization

centr_clo(g, mode = "all")$centralization
centr_betw(g, directed = FALSE)$centralization
centr_eigen(g, directed = FALSE)$centralization

centr_degree_tmax Theoretical maximum for degree centralization

Description

See centralize for a summary of graph centralization.

Usage
centr_degree_tmax(
graph = NULL,
nodes = 0,

mode = c("all”, "out", "in", "total"),
loops = FALSE

)
Arguments
graph The input graph. It can also be NULL, if nodes, mode and loops are all given.
nodes The number of vertices. This is ignored if the graph is given.
mode This is the same as the mode argument of degree.
loops Logical scalar, whether to consider loops edges when calculating the degree.
Value

Real scalar, the theoretical maximum (unnormalized) graph degree centrality score for graphs with
given order and other parameters.

See Also

Other centralization related: centr_betw_tmax (), centr_betw(), centr_clo_tmax(), centr_clo(),
centr_degree(), centr_eigen_tmax(), centr_eigen(), centralize()

Examples

A BA graph is quite centralized

g <- sample_pa(1000, m = 4)

centr_degree(g, normalized = FALSE)$centralization %>%
*/" (centr_degree_tmax(g))

centr_degree(g, normalized = TRUE)$centralization

centr_eigen 59

centr_eigen Centralize a graph according to the eigenvector centrality of vertices

Description

See centralize for a summary of graph centralization.

Usage

centr_eigen(
graph,
directed = FALSE,
scale = TRUE,
options = arpack_defaults,
normalized = TRUE

)
Arguments
graph The input graph.
directed logical scalar, whether to use directed shortest paths for calculating eigenvector
centrality.
scale Whether to rescale the eigenvector centrality scores, such that the maximum
score is one.
options This is passed to eigen_centrality, the options for the ARPACK eigensolver.
normalized Logical scalar. Whether to normalize the graph level centrality score by dividing
by the theoretical maximum.
Value

A named list with the following components:

vector The node-level centrality scores.
value The corresponding eigenvalue.
options ARPACK options, see the return value of eigen_centrality for details.

centralization The graph level centrality index.

theoretical_max

The same as above, the theoretical maximum centralization score for a graph
with the same number of vertices.

See Also

Other centralization related: centr_betw_tmax (), centr_betw(), centr_clo_tmax(), centr_clo(),
centr_degree_tmax (), centr_degree(), centr_eigen_tmax(), centralize()

60 centr_eigen_tmax

Examples

A BA graph is quite centralized

g <- sample_pa(1000, m = 4)
centr_degree(g)$centralization

centr_clo(g, mode = "all")$centralization
centr_betw(g, directed = FALSE)$centralization
centr_eigen(g, directed = FALSE)$centralization

The most centralized graph according to eigenvector centrality
g0 <- make_graph(c(2,1), n = 10, dir = FALSE)

gl <- make_star(10, mode = "undirected")
centr_eigen(g@)$centralization

centr_eigen(gl)$centralization

centr_eigen_tmax Theoretical maximum for betweenness centralization

Description

See centralize for a summary of graph centralization.

Usage

centr_eigen_tmax(graph = NULL, nodes = @, directed = FALSE, scale = TRUE)

Arguments
graph The input graph. It can also be NULL, if nodes is given.
nodes The number of vertices. This is ignored if the graph is given.
directed logical scalar, whether to use directed shortest paths for calculating between-
ness.
scale Whether to rescale the eigenvector centrality scores, such that the maximum
score is one.
Value

Real scalar, the theoretical maximum (unnormalized) graph betweenness centrality score for graphs
with given order and other parameters.

See Also

Other centralization related: centr_betw_tmax(), centr_betw(), centr_clo_tmax(), centr_clo(),
centr_degree_tmax(), centr_degree(), centr_eigen(), centralize()

Examples

A BA graph is quite centralized

g <- sample_pa(1000, m = 4)

centr_eigen(g, normalized = FALSE)$centralization %>%
*/" (centr_eigen_tmax(g))

centr_eigen(g, normalized = TRUE)$centralization

centralize 61

centralize Centralization of a graph

Description

Centralization is a method for creating a graph level centralization measure from the centrality
scores of the vertices.

Usage

centralize(scores, theoretical.max = @, normalized = TRUE)

Arguments

scores The vertex level centrality scores.

theoretical.max
Real scalar. The graph level centrality score of the most centralized graph with
the same number of vertices as the graph under study. This is only used if the
normalized argument is set to TRUE.

normalized Logical scalar. Whether to normalize the graph level centrality score by dividing
by the supplied theoretical maximum.

Details

Centralization is a general method for calculating a graph-level centrality score based on node-level
centrality measure. The formula for this is

where ¢, is the centrality of vertex v.

The graph-level centrality score can be normalized by dividing by the maximum theoretical score
for a graph with the same number of vertices, using the same parameters, e.g. directedness, whether
we consider loop edges, etc.

For degree, closeness and betweenness the most centralized structure is some version of the star
graph, in-star, out-star or undirected star.

For eigenvector centrality the most centralized structure is the graph with a single edge (and poten-
tially many isolates).

centralize implements general centralization formula to calculate a graph-level score from vertex-
level scores.
Value

A real scalar, the centralization of the graph from which scores were derived.

References

Freeman, L.C. (1979). Centrality in Social Networks I: Conceptual Clarification. Social Networks
1,215-239.

Wasserman, S., and Faust, K. (1994). Social Network Analysis: Methods and Applications. Cam-
bridge University Press.

62 cliques

See Also

Other centralization related: centr_betw_tmax (), centr_betw(), centr_clo_tmax(), centr_clo(),
centr_degree_tmax(), centr_degree(), centr_eigen_tmax(), centr_eigen()

Examples

A BA graph is quite centralized

g <- sample_pa(1000, m=4)
centr_degree(g)$centralization

centr_clo(g, mode="all")$centralization
centr_eigen(g, directed=FALSE)$centralization

The most centralized graph according to eigenvector centrality
g0 <- graph(c(2,1), n=10, dir=FALSE)

gl <- make_star(10, mode="undirected")
centr_eigen(g@)$centralization

centr_eigen(gl)$centralization

cliques The functions find cliques, ie. complete subgraphs in a graph

Description

These functions find all, the largest or all the maximal cliques in an undirected graph. The size of
the largest clique can also be calculated.

Usage

cliques(graph, min = NULL, max = NULL)

max_cliques(graph, min = NULL, max = NULL, subset = NULL, file = NULL)

Arguments

graph The input graph, directed graphs will be considered as undirected ones, multiple
edges and loops are ignored.

min Numeric constant, lower limit on the size of the cliques to find. NULL means no
limit, ie. it is the same as O.

max Numeric constant, upper limit on the size of the cliques to find. NULL means no
limit.

subset If not NULL, then it must be a vector of vertex ids, numeric or symbolic if the
graph is named. The algorithm is run from these vertices only, so only a subset
of all maximal cliques is returned. See the Eppstein paper for details. This
argument makes it possible to easily parallelize the finding of maximal cliques.

file If not NULL, then it must be a file name, i.e. a character scalar. The output of the

algorithm is written to this file. (If it exists, then it will be overwritten.) Each
clique will be a separate line in the file, given with the numeric ids of its vertices,
separated by whitespace.

cliques 63

Details

cliques find all complete subgraphs in the input graph, obeying the size limitations given in the
min and max arguments.

largest_cliques finds all largest cliques in the input graph. A clique is largest if there is no other
clique including more vertices.

max_cliques finds all maximal cliques in the input graph. A clique in maximal if it cannot be
extended to a larger clique. The largest cliques are always maximal, but a maximal clique is not
necessarily the largest.

count_max_cliques counts the maximal cliques.
clique_num calculates the size of the largest clique(s).

The current implementation of these functions searches for maximal independent vertex sets (see
ivs) in the complementer graph.

Value

cliques, largest_cliques and clique_num return a list containing numeric vectors of vertex ids.
Each list element is a clique, i.e. a vertex sequence of class igraph.vs.

max_cliques returns NULL, invisibly, if its file argument is not NULL. The output is written to the
specified file in this case.

clique_num and count_max_cliques return an integer scalar.

Author(s)

Tamas Nepusz <ntamas@gmail.com> and Gabor Csardi <csardi.gabor@gmail.com>

References

For maximal cliques the following algorithm is implemented: David Eppstein, Maarten Loffler,
Darren Strash: Listing All Maximal Cliques in Sparse Graphs in Near-optimal Time. https://
arxiv.org/abs/1006.5440

See Also

ivs

Examples

this usually contains cliques of size six
g <- sample_gnp(100, 0.3)

clique_num(g)

cliques(g, min=6)

largest_cliques(g)

To have a bit less maximal cliques, about 100-200 usually
g <- sample_gnp(100, 0.03)
max_cliques(g)

https://arxiv.org/abs/1006.5440
https://arxiv.org/abs/1006.5440

64

closeness

closeness

Closeness centrality of vertices

Description

Closeness centrality measures how many steps is required to access every other vertex from a given

vertex.

Usage

closeness(
graph,
vids

V(graph),

mode = c("out”, "in", "all"”, "total"),
weights = NULL,
normalized = FALSE

estimate_closeness(

graph,

vids = V(graph),
mode = c("out”, "in", "all"”, "total"),

cutoff,

weights = NULL,
normalized = FALSE

Arguments

graph
vids

mode

weights

normalized

cutoff

Details

The graph to analyze.
The vertices for which closeness will be calculated.

Character string, defined the types of the paths used for measuring the distance
in directed graphs. “in” measures the paths fo a vertex, “out” measures paths
from a vertex, all uses undirected paths. This argument is ignored for undirected
graphs.

Optional positive weight vector for calculating weighted closeness. If the graph
has a weight edge attribute, then this is used by default. Weights are used for
calculating weighted shortest paths, so they are interpreted as distances.

Logical scalar, whether to calculate the normalized closeness. Normalization is
performed by multiplying the raw closeness by n — 1, where n is the number of
vertices in the graph.

The maximum path length to consider when calculating the betweenness. If zero
or negative then there is no such limit.

The closeness centrality of a vertex is defined by the inverse of the average length of the shortest
paths to/from all the other vertices in the graph:

cluster_edge_betweenness 65

_
Zi#v dvl

If there is no (directed) path between vertex v and i, then the total number of vertices is used in the
formula instead of the path length.

estimate_closeness only considers paths of length cutoff or smaller, this can be run for larger
graphs, as the running time is not quadratic (if cutoff is small). If cutoff is zero or negative then
the function calculates the exact closeness scores.

Value

Numeric vector with the closeness values of all the vertices in v.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

References

Freeman, L.C. (1979). Centrality in Social Networks I: Conceptual Clarification. Social Networks,
1,215-239.

See Also

betweenness, degree

Examples

g <- make_ring(10)

g2 <- make_star(10)
closeness(g)
closeness(g2, mode="in"
closeness(g2, mode="out")
closeness(g2, mode="all")

cluster_edge_betweenness
Community structure detection based on edge betweenness

Description

Many networks consist of modules which are densely connected themselves but sparsely connected
to other modules.

66

Usage

cluster_edge_betweenness

cluster_edge_betweenness(

graph,
weights

E(graph)$weight,

directed = TRUE,
edge.betweenness = TRUE,
merges = TRUE,

bridges

TRUE,

modularity = TRUE,
membership = TRUE

Arguments

graph
weights

directed

The graph to analyze.

The edge weights. Supply NULL to omit edge weights. By default the ‘weight’
edge attribute is used, if it is present. Edge weights are used to calculate weighted
edge betweenness. This means that edges are interpreted as distances, not as
connection strengths.

Logical constant, whether to calculate directed edge betweenness for directed
graphs. It is ignored for undirected graphs.

edge.betweenness

merges

bridges

modularity

membership

Details

Logical constant, whether to return the edge betweenness of the edges at the
time of their removal.

Logical constant, whether to return the merge matrix representing the hierarchi-
cal community structure of the network. This argument is called merges, even
if the community structure algorithm itself is divisive and not agglomerative: it
builds the tree from top to bottom. There is one line for each merge (i.e. split) in
matrix, the first line is the first merge (last split). The communities are identified
by integer number starting from one. Community ids smaller than or equal to
N, the number of vertices in the graph, belong to singleton communities, ie.
individual vertices. Before the first merge we have N communities numbered
from one to N. The first merge, the first line of the matrix creates community
N + 1, the second merge creates community N + 2, etc.

Logical constant, whether to return a list the edge removals which actually split-
ted a component of the graph.

Logical constant, whether to calculate the maximum modularity score, consid-
ering all possibly community structures along the edge-betweenness based edge
removals.

Logical constant, whether to calculate the membership vector corresponding to
the highest possible modularity score.

The edge betweenness score of an edge measures the number of shortest paths through it, see
edge_betweenness for details. The idea of the edge betweenness based community structure de-
tection is that it is likely that edges connecting separate modules have high edge betweenness as
all the shortest paths from one module to another must traverse through them. So if we gradually
remove the edge with the highest edge betweenness score we will get a hierarchical map, a rooted
tree, called a dendrogram of the graph. The leafs of the tree are the individual vertices and the root
of the tree represents the whole graph.

cluster_fast_greedy 67

cluster_edge_betweenness performs this algorithm by calculating the edge betweenness of the
graph, removing the edge with the highest edge betweenness score, then recalculating edge be-
tweenness of the edges and again removing the one with the highest score, etc.

edge.betweeness.community returns various information collected through the run of the algo-
rithm. See the return value down here.

Value
cluster_edge_betweenness returns a communities object, please see the communities manual
page for details.

Author(s)

Gabor Csardi <csardi.gabor@gmail . com>

References

M Newman and M Girvan: Finding and evaluating community structure in networks, Physical
Review E 69, 026113 (2004)

See Also
edge_betweenness for the definition and calculation of the edge betweenness, cluster_walktrap,
cluster_fast_greedy, cluster_leading_eigen for other community detection methods.

See communities for extracting the results of the community detection.

Examples

g <- sample_pa(100, m = 2, directed = FALSE)
eb <- cluster_edge_betweenness(g)

g <- make_full_graph(10) %du% make_full_graph(10)
g <- add_edges(g, c(1,11))

eb <- cluster_edge_betweenness(g)

eb

cluster_fast_greedy Community structure via greedy optimization of modularity

Description

This function tries to find dense subgraph, also called communities in graphs via directly optimizing
a modularity score.

Usage

cluster_fast_greedy(
graph,
merges = TRUE,
modularity = TRUE,
membership = TRUE,
weights = E(graph)$weight

68 cluster_fast_greedy

Arguments
graph The input graph
merges Logical scalar, whether to return the merge matrix.
modularity Logical scalar, whether to return a vector containing the modularity after each
merge.
membership Logical scalar, whether to calculate the membership vector corresponding to
the maximum modularity score, considering all possible community structures
along the merges.
weights If not NULL, then a numeric vector of edge weights. The length must match the
number of edges in the graph. By default the ‘weight’ edge attribute is used
as weights. If it is not present, then all edges are considered to have the same
weight. Larger edge weights correspond to stronger connections.
Details

This function implements the fast greedy modularity optimization algorithm for finding community
structure, see A Clauset, MEJ Newman, C Moore: Finding community structure in very large
networks, http://www.arxiv.org/abs/cond-mat/0408187 for the details.

Value

cluster_fast_greedy returns a communities object, please see the communities manual page
for details.

Author(s)

Tamas Nepusz <ntamas@gmail.com> and Gabor Csardi <csardi.gabor@gmail.com> for the R
interface.

References

A Clauset, MEJ Newman, C Moore: Finding community structure in very large networks, http://www.arxiv.org/abs/cond-
mat/0408187

See Also

communities for extracting the results.

See also cluster_walktrap, cluster_spinglass, cluster_leading_eigen and cluster_edge_betweenness,
cluster_louvain cluster_leiden for other methods.

Examples

g <- make_full_graph(5) %du% make_full_graph(5) %du% make_full_graph(5)
g <- add_edges(g, c(1,6, 1,11, 6, 11))

fc <- cluster_fast_greedy(g)

membership(fc)

sizes(fc)

cluster_fluid_communities 69

cluster_fluid_communities
Community detection algorithm based on interacting fluids

Description

The algorithm detects communities based on the simple idea of several fluids interacting in a non-
homogeneous environment (the graph topology), expanding and contracting based on their interac-
tion and density.

Usage

cluster_fluid_communities(graph, no.of.communities)

Arguments

graph The input graph. The graph must be simple and connected. Empty graphs are not
supported as well as single vertex graphs. Edge directions are ignored. Weights
are not considered.

no.of.communities

The number of communities to be found. Must be greater than 0 and fewer than
number of vertices in the graph.

Value

cluster_fluid_communities returns a communities object, please see the communities manual
page for details.

Author(s)

Ferran Parés

References

Parés F, Gasulla DG, et. al. (2018) Fluid Communities: A Competitive, Scalable and Diverse Com-
munity Detection Algorithm. In: Complex Networks & Their Applications VI: Proceedings
of Complex Networks 2017 (The Sixth International Conference on Complex Networks and Their
Applications), Springer, vol 689, p 229, doi: 10.1007/978-3-319-72150-7_19

See Also

See communities for extracting the membership, modularity scores, etc. from the results.

Other community detection algorithms: cluster_walktrap, cluster_spinglass, cluster_leading_eigen,
cluster_edge_betweenness, cluster_fast_greedy, cluster_label_prop cluster_louvain,
cluster_leiden

Examples

g <- graph.famous("Zachary")
comms <- cluster_fluid_communities(g, 2)

70 cluster_infomap

cluster_infomap Infomap community finding

Description

Find community structure that minimizes the expected description length of a random walker tra-
jectory

Usage
cluster_infomap(
graph,
e.weights = NULL,
v.weights = NULL,

nb.trials = 10,
modularity = TRUE

)
Arguments
graph The input graph.
e.weights If not NULL, then a numeric vector of edge weights. The length must match the
number of edges in the graph. By default the ‘weight’ edge attribute is used
as weights. If it is not present, then all edges are considered to have the same
weight. Larger edge weights correspond to stronger connections.
v.weights If not NULL, then a numeric vector of vertex weights. The length must match the
number of vertices in the graph. By default the ‘weight’ vertex attribute is used
as weights. If it is not present, then all vertices are considered to have the same
weight. A larger vertex weight means a larger probability that the random surfer
jumps to that vertex.
nb.trials The number of attempts to partition the network (can be any integer value equal
or larger than 1).
modularity Logical scalar, whether to calculate the modularity score of the detected com-
munity structure.
Details

Please see the details of this method in the references given below.

Value

cluster_infomap returns a communities object, please see the communities manual page for
details.

Author(s)

Martin Rosvall wrote the original C++ code. This was ported to be more igraph-like by Emmanuel
Navarro. The R interface and some cosmetics was done by Gabor Csardi <csardi.gabor@gmail.com>.

cluster_label_prop 71

References

The original paper: M. Rosvall and C. T. Bergstrom, Maps of information flow reveal community
structure in complex networks, PNAS 105, 1118 (2008) doi: 10.1073/pnas.0706851105, https:
//arxiv.org/abs/0707.0609

A more detailed paper: M. Rosvall, D. Axelsson, and C. T. Bergstrom, The map equation, Eur.
Phys. J. Special Topics 178, 13 (2009). doi: 10.1140/epjst/e2010011791, https://arxiv.org/
abs/0906.1405.

See Also

Other community finding methods and communities.

Examples

Zachary's karate club
g <- make_graph("Zachary")

imc <- cluster_infomap(g)
membership(imc)
communities(imc)

cluster_label_prop Finding communities based on propagating labels

Description

This is a fast, nearly linear time algorithm for detecting community structure in networks. In works
by labeling the vertices with unique labels and then updating the labels by majority voting in the
neighborhood of the vertex.

Usage

cluster_label_prop(graph, weights = NULL, initial = NULL, fixed = NULL)

Arguments

graph The input graph, should be undirected to make sense.

weights An optional weight vector. It should contain a positive weight for all the edges.
The ‘weight’ edge attribute is used if present. Supply ‘NA’ here if you want to
ignore the ‘weight’ edge attribute. Larger edge weights correspond to stronger
connections.

initial The initial state. If NULL, every vertex will have a different label at the beginning.
Otherwise it must be a vector with an entry for each vertex. Non-negative values
denote different labels, negative entries denote vertices without labels.

fixed Logical vector denoting which labels are fixed. Of course this makes sense only

if you provided an initial state, otherwise this element will be ignored. Also note
that vertices without labels cannot be fixed.

https://doi.org/10.1073/pnas.0706851105
https://arxiv.org/abs/0707.0609
https://arxiv.org/abs/0707.0609
https://doi.org/10.1140/epjst/e2010-01179-1
https://arxiv.org/abs/0906.1405
https://arxiv.org/abs/0906.1405

72 cluster_leading_eigen

Details

This function implements the community detection method described in: Raghavan, U.N. and Al-
bert, R. and Kumara, S.: Near linear time algorithm to detect community structures in large-scale
networks. Phys Rev E 76, 036106. (2007). This version extends the original method by the ability
to take edge weights into consideration and also by allowing some labels to be fixed.

From the abstract of the paper: “In our algorithm every node is initialized with a unique label
and at every step each node adopts the label that most of its neighbors currently have. In this
iterative process densely connected groups of nodes form a consensus on a unique label to form
communities.”

Value

cluster_label_prop returns a communities object, please see the communities manual page for
details.

Author(s)

Tamas Nepusz <ntamas@gmail . com> for the C implementation, Gabor Csardi <csardi.gabor@gmail.com>
for this manual page.

References

Raghavan, U.N. and Albert, R. and Kumara, S.: Near linear time algorithm to detect community
structures in large-scale networks. Phys Rev E 76, 036106. (2007)

See Also

communities for extracting the actual results.

cluster_fast_greedy, cluster_walktrap, cluster_spinglass, cluster_louvainand cluster_leiden
for other community detection methods.

Examples

g <- sample_gnp(10, 5/10) %du% sample_gnp(9, 5/9)
g <- add_edges(g, c(1, 12))
cluster_label_prop(g)

cluster_leading_eigen Community structure detecting based on the leading eigenvector of the
community matrix

Description

This function tries to find densely connected subgraphs in a graph by calculating the leading non-
negative eigenvector of the modularity matrix of the graph.

cluster_leading eigen 73

Usage

cluster_leading_eigen(
graph,
steps = -1,
weights = NULL,
start = NULL,
options = arpack_defaults,
callback = NULL,

extra = NULL,
env = parent.frame()
)
Arguments
graph The input graph. Should be undirected as the method needs a symmetric matrix.
steps The number of steps to take, this is actually the number of tries to make a step.
It is not a particularly useful parameter.
weights An optional weight vector. The ‘weight’ edge attribute is used if present. Supply
‘NA’ here if you want to ignore the ‘weight’ edge attribute. Larger edge weights
correspond to stronger connections between vertices.
start NULL, or a numeric membership vector, giving the start configuration of the al-
gorithm.
options A named list to override some ARPACK options.
callback If not NULL, then it must be callback function. This is called after each iteration,
after calculating the leading eigenvector of the modularity matrix. See details
below.
extra Additional argument to supply to the callback function.
env The environment in which the callback function is evaluated.
Details

The function documented in these section implements the ‘leading eigenvector’ method developed
by Mark Newman, see the reference below.

The heart of the method is the definition of the modularity matrix, B, which is B=A-P, A being
the adjacency matrix of the (undirected) network, and P contains the probability that certain edges
are present according to the ‘configuration model’. In other words, a P[i,j] element of P is the
probability that there is an edge between vertices i and j in a random network in which the degrees
of all vertices are the same as in the input graph.

The leading eigenvector method works by calculating the eigenvector of the modularity matrix for
the largest positive eigenvalue and then separating vertices into two community based on the sign
of the corresponding element in the eigenvector. If all elements in the eigenvector are of the same
sign that means that the network has no underlying comuunity structure. Check Newman’s paper to
understand why this is a good method for detecting community structure.

Value
cluster_leading_eigen returns a named list with the following members:

membership The membership vector at the end of the algorithm, when no more splits are
possible.

74 cluster_leading_eigen

merges The merges matrix starting from the state described by the membership member.
This is a two-column matrix and each line describes a merge of two communi-
ties, the first line is the first merge and it creates community ‘N’, N is the number
of initial communities in the graph, the second line creates community N+1, etc.

options Information about the underlying ARPACK computation, see arpack for details.

Callback functions

The callback argument can be used to supply a function that is called after each eigenvector
calculation. The following arguments are supplied to this function:
membership The actual membership vector, with zero-based indexing.

community The community that the algorithm just tried to split, community numbering starts with
zero here.

value The eigenvalue belonging to the leading eigenvector the algorithm just found.
vector The leading eigenvector the algorithm just found.

multiplier An R function that can be used to multiple the actual modularity matrix with an arbitrary
vector. Supply the vector as an argument to perform this multiplication. This function can be
used with ARPACK.

extra The extra argument that was passed to cluster_leading_eigen. The callback function
should return a scalar number. If this number is non-zero, then the clustering is terminated.

Author(s)

Gabor Csardi <csardi.gabor@gmail . com>

References

MEJ Newman: Finding community structure using the eigenvectors of matrices, Physical Review
E 74 036104, 2006.

See Also

modularity, cluster_walktrap, cluster_edge_betweenness, cluster_fast_greedy, as.dendrogram

Examples

g <- make_full_graph(5) %du% make_full_graph(5) %du% make_full_graph(5)
g <- add_edges(g, c(1,6, 1,11, 6, 11))

lec <- cluster_leading_eigen(g)

lec

cluster_leading_eigen(g, start=membership(lec))

cluster_leiden

75

cluster_leiden

Finding community structure of a graph using the Leiden algorithm of
Traag, van Eck & Waltman.

Description

Finding community structure of a graph using the Leiden algorithm of Traag, van Eck & Waltman.

Usage

cluster_leiden(

graph,

objective_function = c("CPM", "modularity"),
weights = NULL,
resolution_parameter = 1,

beta = 90.01,

initial_membership = NULL,

n_iterations

:2’

vertex_weights = NULL

Arguments

graph

The input graph, only undirected graphs are supported.

objective_function

weights

Whether to use the Constant Potts Model (CPM) or modularity. Must be either
"CPM" or "modularity”.

Optional edge weights to be used. Can be a vector or an edge attribute name. If
the graph has a weight edge attribute, then this is used by default. Supply NA
here if the graph has a weight edge attribute, but you want to ignore it.

resolution_parameter

beta

The resolution parameter to use. Higher resolutions lead to more smaller com-
munities, while lower resolutions lead to fewer larger communities.

Parameter affecting the randomness in the Leiden algorithm. This affects only
the refinement step of the algorithm.

initial_membership

n_iterations

vertex_weights

Value

If provided, the Leiden algorithm will try to improve this provided member-
ship. If no argument is provided, the aglorithm simply starts from the singleton
partition.

the number of iterations to iterate the Leiden algorithm. Each iteration may
improve the partition further.

the vertex weights used in the Leiden algorithm. If this is not provided, it will
be automatically determined on the basis of whether you want to use CPM or
modularity. If you do provide this, please make sure that you understand what
you are doing.

cluster_leiden returns a communities object, please see the communities manual page for de-

tails.

76 cluster_louvain

Author(s)

Vincent Traag

References

Traag, V. A., Waltman, L., & van Eck, N. J. (2019). From Louvain to Leiden: guaranteeing well-
connected communities. Scientific reports, 9(1), 5233. doi: 10.1038/s41598-019-41695-z

See Also

See communities for extracting the membership, modularity scores, etc. from the results.

Other community detection algorithms: cluster_walktrap, cluster_spinglass, cluster_leading_eigen,
cluster_edge_betweenness, cluster_fast_greedy, cluster_label_prop cluster_louvain

Examples

g <- graph.famous("Zachary")
By default CPM is used
g <- cluster_leiden(g, resolution_parameter=0.06)

cluster_louvain Finding community structure by multi-level optimization of modularity

Description
This function implements the multi-level modularity optimization algorithm for finding community
structure, see references below. It is based on the modularity measure and a hierarchical approach.
Usage

cluster_louvain(graph, weights = NULL)

Arguments
graph The input graph.
weights Optional positive weight vector. If the graph has a weight edge attribute, then
this is used by default. Supply NA here if the graph has a weight edge attribute,
but you want to ignore it. Larger edge weights correspond to stronger connec-
tions.
Details

This function implements the multi-level modularity optimization algorithm for finding commu-
nity structure, see VD Blondel, J-L. Guillaume, R Lambiotte and E Lefebvre: Fast unfolding of
community hierarchies in large networks, https://arxiv.org/abs/0803.0476 for the details.

It is based on the modularity measure and a hierarchical approach. Initially, each vertex is assigned
to a community on its own. In every step, vertices are re-assigned to communities in a local, greedy
way: each vertex is moved to the community with which it achieves the highest contribution to
modularity. When no vertices can be reassigned, each community is considered a vertex on its own,
and the process starts again with the merged communities. The process stops when there is only a
single vertex left or when the modularity cannot be increased any more in a step.

This function was contributed by Tom Gregorovic.

https://arxiv.org/abs/0803.0476

cluster_optimal 77

Value

cluster_louvain returns a communities object, please see the communities manual page for
details.

Author(s)

Tom Gregorovic, Tamas Nepusz <ntamas@gmail . com>

References

Vincent D. Blondel, Jean-Loup Guillaume, Renaud Lambiotte, Etienne Lefebvre: Fast unfolding of
communities in large networks. J. Stat. Mech. (2008) P10008

See Also

See communities for extracting the membership, modularity scores, etc. from the results.

Other community detection algorithms: cluster_walktrap, cluster_spinglass, cluster_leading_eigen,
cluster_edge_betweenness, cluster_fast_greedy, cluster_label_prop cluster_leiden

Examples

This is so simple that we will have only one level

g <- make_full_graph(5) %du% make_full_graph(5) %du% make_full_graph(5)
g <- add_edges(g, c(1,6, 1,11, 6, 11))

cluster_louvain(g)

cluster_optimal Optimal community structure

Description

This function calculates the optimal community structure of a graph, by maximizing the modularity
measure over all possible partitions.

Usage

cluster_optimal(graph, weights = NULL)

Arguments
graph The input graph. Edge directions are ignored for directed graphs.
weights Optional positive weight vector for optimizing weighted modularity. If the graph

has a weight edge attribute, then this is used by default. Supply NA to ignore
the weights of a weighted graph. Larger edge weights correspond to stronger
connections.

78 cluster_optimal

Details

This function calculates the optimal community structure for a graph, in terms of maximal modu-
larity score.

The calculation is done by transforming the modularity maximization into an integer programming
problem, and then calling the GLPK library to solve that. Please the reference below for details.

Note that modularity optimization is an NP-complete problem, and all known algorithms for it have
exponential time complexity. This means that you probably don’t want to run this function on larger
graphs. Graphs with up to fifty vertices should be fine, graphs with a couple of hundred vertices
might be possible.

Value
cluster_optimal returns a communities object, please see the communities manual page for

details.

Examples

Zachary's karate club
g <- make_graph("Zachary")

We put everything into a big 'try' block, in case
igraph was compiled without GLPK support

The calculation only takes a couple of seconds
oc <- cluster_optimal(g)

Double check the result
print(modularity(oc))
print(modularity(g, membership(oc)))

Compare to the greedy optimizer
fc <- cluster_fast_greedy(g)
print(modularity(fc))

Author(s)

Gabor Csardi <csardi . gabor@gmail . com>

References

Ulrik Brandes, Daniel Delling, Marco Gaertler, Robert Gorke, Martin Hoefer, Zoran Nikoloski,
Dorothea Wagner: On Modularity Clustering, /IEEE Transactions on Knowledge and Data Engi-
neering 20(2):172-188, 2008.

See Also

communities for the documentation of the result, modularity. See also cluster_fast_greedy
for a fast greedy optimizer.

cluster_spinglass 79

cluster_spinglass Finding communities in graphs based on statistical meachanics

Description

This function tries to find communities in graphs via a spin-glass model and simulated annealing.

Usage

cluster_spinglass(
graph,
weights = NULL,
vertex = NULL,
spins = 25,
parupdate = FALSE,
start.temp = 1,
stop.temp = 0.01,
cool.fact = 9.99,

= c(’

update.rule 'config”, "random"”, "simple"),
gamma = 1,
implementation = c("orig", "neg"),
gamma.minus = 1
)
Arguments
graph The input graph, can be directed but the direction of the edges is neglected.
weights The weights of the edges. Either a numeric vector or NULL. If it is null and the
input graph has a ‘weight’ edge attribute then that will be used. If NULL and
no such attribute is present then the edges will have equal weights. Set this to
NA if the graph was a ‘weight’ edge attribute, but you don’t want to use it for
community detection. A larger edge weight means a stronger connection for
this function.
vertex This parameter can be used to calculate the community of a given vertex without
calculating all communities. Note that if this argument is present then some
other arguments are ignored.
spins Integer constant, the number of spins to use. This is the upper limit for the
number of communities. It is not a problem to supply a (reasonably) big number
here, in which case some spin states will be unpopulated.
parupdate Logical constant, whether to update the spins of the vertices in parallel (syn-
chronously) or not. This argument is ignored if the second form of the function
is used (ie. the ‘vertex’ argument is present). It is also not implemented in the
“neg” implementation.
start. temp Real constant, the start temperature. This argument is ignored if the second form
of the function is used (ie. the ‘vertex’ argument is present).
stop.temp Real constant, the stop temperature. The simulation terminates if the tempera-

ture lowers below this level. This argument is ignored if the second form of the
function is used (ie. the ‘vertex’ argument is present).

80

cluster_spinglass

cool.fact Cooling factor for the simulated annealing. This argument is ignored if the
second form of the function is used (ie. the ‘vertex’ argument is present).

update.rule Character constant giving the ‘null-model’ of the simulation. Possible values:
“simple” and “config”. “simple” uses a random graph with the same number
of edges as the baseline probability and “config” uses a random graph with the
same vertex degrees as the input graph.

gamma Real constant, the gamma argument of the algorithm. This specifies the bal-
ance between the importance of present and non-present edges in a community.
Roughly, a comunity is a set of vertices having many edges inside the commu-
nity and few edges outside the community. The default 1.0 value makes exist-
ing and non-existing links equally important. Smaller values make the existing
links, greater values the missing links more important.

implementation Character scalar. Currently igraph contains two implementations for the Spin-
glass community finding algorithm. The faster original implementation is the
default. The other implementation, that takes into account negative weights, can
be chosen by supplying ‘neg’ here.

gamma.minus Real constant, the gamma.minus parameter of the algorithm. This specifies the
balance between the importance of present and non-present negative weighted
edges in a community. Smaller values of gamma.minus, leads to communities
with lesser negative intra-connectivity. If this argument is set to zero, the al-
gorithm reduces to a graph coloring algorithm, using the number of spins as
the number of colors. This argument is ignored if the ‘orig’ implementation is
chosen.

Details

This function tries to find communities in a graph. A community is a set of nodes with many edges
inside the community and few edges between outside it (i.e. between the community itself and the
rest of the graph.)

This idea is reversed for edges having a negative weight, ie. few negative edges inside a community
and many negative edges between communities. Note that only the ‘neg’ implementation supports
negative edge weights.

The spinglass.cummunity function can solve two problems related to community detection. If
the vertex argument is not given (or it is NULL), then the regular community detection problem is
solved (approximately), i.e. partitioning the vertices into communities, by optimizing the an energy
function.

If the vertex argument is given and it is not NULL, then it must be a vertex id, and the same energy
function is used to find the community of the the given vertex. See also the examples below.

Value

If the vertex argument is not given, ie. the first form is used then a cluster_spinglass returns a
communities object.

If the vertex argument is present, ie. the second form is used then a named list is returned with the
following components:

community Numeric vector giving the ids of the vertices in the same community as vertex.
cohesion The cohesion score of the result, see references.
adhesion The adhesion score of the result, see references.

inner.links The number of edges within the community of vertex.

cluster_walktrap 81

outer.links The number of edges between the community of vertex and the rest of the
graph.

Author(s)

Jorg Reichardt for the original code and Gabor Csardi <csardi.gabor@gmail.com> for the igraph
glue code.

Changes to the original function for including the possibility of negative ties were implemented by
Vincent Traag (http://www. traag.net/).

References

J. Reichardt and S. Bornholdt: Statistical Mechanics of Community Detection, Phys. Rev. E, 74,
016110 (2006), https://arxiv.org/abs/cond-mat/0603718

M. E. J. Newman and M. Girvan: Finding and evaluating community structure in networks, Phys.
Rev. E 69, 026113 (2004)

V.A. Traag and Jeroen Bruggeman: Community detection in networks with positive and negative
links, https://arxiv.org/abs/0811.2329 (2008).

See Also

communities, components

Examples

g <- sample_gnp(10, 5/10) %du% sample_gnp(9, 5/9)
g <- add_edges(g, c(1, 12))

g <- induced_subgraph(g, subcomponent(g, 1))
cluster_spinglass(g, spins=2)
cluster_spinglass(g, vertex=1)

cluster_walktrap Community strucure via short random walks

Description

This function tries to find densely connected subgraphs, also called communities in a graph via
random walks. The idea is that short random walks tend to stay in the same community.

Usage

cluster_walktrap(
graph,
weights =
steps = 4,
merges = TRUE,
modularity = TRUE,
membership = TRUE

E(graph)$weight,

http://www.traag.net/
https://arxiv.org/abs/cond-mat/0603718
https://arxiv.org/abs/0811.2329

82 cluster_walktrap

Arguments
graph The input graph, edge directions are ignored in directed graphs.
weights The edge weights. Larger edge weights increase the probability that an edge is
selected by the random walker. In other words, larger edge weights correspond
to stronger connections.
steps The length of the random walks to perform.
merges Logical scalar, whether to include the merge matrix in the result.
modularity Logical scalar, whether to include the vector of the modularity scores in the
result. If the membership argument is true, then it will be always calculated.
membership Logical scalar, whether to calculate the membership vector for the split corre-
sponding to the highest modularity value.
Details

This function is the implementation of the Walktrap community finding algorithm, see Pascal Pons,
Matthieu Latapy: Computing communities in large networks using random walks, https://arxiv.org/abs/physics/0512106

Value

cluster_walktrap returns a communities object, please see the communities manual page for
details.

Author(s)

Pascal Pons (http://psl.pons.free.fr/) and Gabor Csardi <csardi.gabor@gmail.com> for
the R and igraph interface

References

Pascal Pons, Matthieu Latapy: Computing communities in large networks using random walks,
https://arxiv.org/abs/physics/0512106

See Also

See communities on getting the actual membership vector, merge matrix, modularity score, etc.

modularity and cluster_fast_greedy, cluster_spinglass, cluster_leading_eigen, cluster_edge_betweenne:
cluster_louvain, and cluster_leiden for other community detection methods.

Examples

g <- make_full_graph(5) %du% make_full_graph(5) %du% make_full_graph(5)
g <- add_edges(g, c(1,6, 1,11, 6, 11))
cluster_walktrap(g)

http://psl.pons.free.fr/

cocitation 83

cocitation Cocitation coupling

Description

Two vertices are cocited if there is another vertex citing both of them. cocitation simply counts
how many types two vertices are cocited. The bibliographic coupling of two vertices is the number
of other vertices they both cite, bibcoupling calculates this.

Usage

cocitation(graph, v = V(graph))

Arguments
graph The graph object to analyze
v Vertex sequence or numeric vector, the vertex ids for which the cocitation or
bibliographic coupling values we want to calculate. The default is all vertices.
Details

cocitation calculates the cocitation counts for the vertices in the v argument and all vertices in
the graph.

bibcoupling calculates the bibliographic coupling for vertices in v and all vertices in the graph.

Calculating the cocitation or bibliographic coupling for only one vertex costs the same amount of
computation as for all vertices. This might change in the future.

Value

A numeric matrix with length(v) lines and vcount (graph) columns. Element (i, j) contains the
cocitation or bibliographic coupling for vertices v[i] and j.

Author(s)

Gabor Csardi <csardi.gabor@gmail . com>

Examples

g <- make_ring(10)
cocitation(g)
bibcoupling(g)

84 cohesive_blocks

cohesive_blocks Calculate Cohesive Blocks

Description

Calculates cohesive blocks for objects of class igraph.

Usage

cohesive_blocks(graph, labels = TRUE)

S3 method for class 'cohesiveBlocks'
length(x)

blocks(blocks)
graphs_from_cohesive_blocks(blocks, graph)

S3 method for class 'cohesiveBlocks'
cohesion(x, ...)

hierarchy(blocks)
parent(blocks)

S3 method for class 'cohesiveBlocks'
print(x, ...)

S3 method for class 'cohesiveBlocks'
summary (object, ...)

S3 method for class 'cohesiveBlocks'
plot(

X!

Y,

colbar = rainbow(max(cohesion(x)) + 1),

col = colbar[max_cohesion(x) + 117,
mark.groups = blocks(x)[-11,

)
plot_hierarchy(

blocks,
layout = layout_as_tree(hierarchy(blocks), root = 1),

)
export_pajek(blocks, graph, file, project.file = TRUE)

max_cohesion(blocks)

cohesive_blocks 85

Arguments
graph For cohesive_blocks a graph object of class igraph. It must be undirected
and simple. (See is_simple.)
For graphs_from_cohesive_blocks and export_pajek the same graph must
be supplied whose cohesive block structure is given in the blocks argument.
labels Logical scalar, whether to add the vertex labels to the result object. These labels

can be then used when reporting and plotting the cohesive blocks.
blocks, x, object
A cohesiveBlocks object, created with the cohesive_blocks function.

Additional arguments. plot_hierarchy and plot pass them to plot.igraph.
print and summary ignore them.

y The graph whose cohesive blocks are supplied in the x argument.

colbar Color bar for the vertex colors. Its length should be at least m + 1, where m is
the maximum cohesion in the graph. Alternatively, the vertex colors can also be
directly specified via the col argument.

col A vector of vertex colors, in any of the usual formats. (Symbolic color names
(e.g. ‘red’, ‘blue’, etc.) , RGB colors (e.g. ‘#FF9900FF’), integer numbers
referring to the current palette. By default the given colbar is used and vertices
with the same maximal cohesion will have the same color.

mark. groups A list of vertex sets to mark on the plot by circling them. By default all cohesive
blocks are marked, except the one corresponding to the all vertices.

layout The layout of a plot, it is simply passed on to plot.igraph, see the possible
formats there. By default the Reingold-Tilford layout generator is used.

file Defines the file (or connection) the Pajek file is written to.

If the project.file argument is TRUE, then it can be a filename (with exten-
sion), a file object, or in general any king of connection object. The file/connection
will be opened if it wasn’t already.

If the project.file argument is FALSE, then several files are created and file
must be a character scalar containing the base name of the files, without exten-
sion. (But it can contain the path to the files.)

See also details below.

project.file Logical scalar, whether to create a single Pajek project file containing all the
data, or to create separated files for each item. See details below.

Details

Cohesive blocking is a method of determining hierarchical subsets of graph vertices based on their
structural cohesion (or vertex connectivity). For a given graph G, a subset of its vertices S C V(G)
is said to be maximally k-cohesive if there is no superset of S with vertex connectivity greater than
or equal to k. Cohesive blocking is a process through which, given a k-cohesive set of vertices,
maximally [-cohesive subsets are recursively identified with [> k. Thus a hierarchy of vertex
subsets is found, with the entire graph G at its root.

The function cohesive_blocks implements cohesive blocking. It returns a cohesiveBlocks ob-
ject. cohesiveBlocks should be handled as an opaque class, i.e. its internal structure should not be
accessed directly, but through the functions listed here.

The function length can be used on cohesiveBlocks objects and it gives the number of blocks.

The function blocks returns the actual blocks stored in the cohesiveBlocks object. They are
returned in a list of numeric vectors, each containing vertex ids.

86 cohesive_blocks

The function graphs_from_cohesive_blocks is similar, but returns the blocks as (induced) sub-
graphs of the input graph. The various (graph, vertex and edge) attributes are kept in the subgraph.

The function cohesion returns a numeric vector, the cohesion of the different blocks. The order of
the blocks is the same as for the blocks and graphs_from_cohesive_blocks functions.

The block hierarchy can be queried using the hierarchy function. It returns an igraph graph, its ver-
tex ids are ordered according the order of the blocks in the blocks and graphs_from_cohesive_blocks,
cohesion, etc. functions.

parent gives the parent vertex of each block, in the block hierarchy, for the root vertex it gives 0.

plot_hierarchy plots the hierarchy tree of the cohesive blocks on the active graphics device, by
calling igraph.plot.

The export_pajek function can be used to export the graph and its cohesive blocks in Pajek format.
It can either export a single Pajek project file with all the information, or a set of files, depending on
its project.file argument. If project.file is TRUE, then the following information is written to
the file (or connection) given in the file argument: (1) the input graph, together with its attributes,
see write_graph for details; (2) the hierarchy graph; and (3) one binary partition for each cohesive
block. If project.file is FALSE, then the file argument must be a character scalar and it is used
as the base name for the generated files. If file is ‘basename’, then the following files are created:
(1) ‘basename.net’ for the original graph; (2) ‘basename_hierarchy.net’ for the hierarchy graph; (3)
‘basename_block_x.net’ for each cohesive block, where ‘x’ is the number of the block, starting with
one.

max_cohesion returns the maximal cohesion of each vertex, i.e. the cohesion of the most cohesive
block of the vertex.

The generic function summary works on cohesiveBlocks objects and it prints a one line summary
to the terminal.

The generic function print is also defined on cohesiveBlocks objects and it is invoked automati-
cally if the name of the cohesiveBlocks object is typed in. It produces an output like this:

Cohesive block structure:
B-1c1, n 23
n 14 00000000.. .0...... 00 000
, h 7 0000000...
nio 0.00 0.000000. .
n

The left part shows the block structure, in this case for five blocks. The first block always corre-
sponds to the whole graph, even if its cohesion is zero. Then cohesion of the block and the number
of vertices in the block are shown. The last part is only printed if the display is wide enough and
shows the vertices in the blocks, ordered by vertex ids. ‘0’ means that the vertex is included, a dot
means that it is not, and the vertices are shown in groups of ten.

The generic function plot plots the graph, showing one or more cohesive blocks in it.

Value

cohesive_blocks returns a cohesiveBlocks object.
blocks returns a list of numeric vectors, containing vertex ids.

graphs_from_cohesive_blocks returns a list of igraph graphs, corresponding to the cohesive
blocks.

cohesion returns a numeric vector, the cohesion of each block.

hierarchy returns an igraph graph, the representation of the cohesive block hierarchy.

cohesive_blocks 87

parent returns a numeric vector giving the parent block of each cohesive block, in the block hier-
archy. The block at the root of the hierarchy has no parent and @ is returned for it.

plot_hierarchy, plot and export_pajek return NULL, invisibly.

max_cohesion returns a numeric vector with one entry for each vertex, giving the cohesion of its
most cohesive block.

print and summary return the cohesiveBlocks object itself, invisibly.

length returns a numeric scalar, the number of blocks.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com> for the current implementation, Peter McMahan (http:
//home.uchicago.edu/~mcmahan/) wrote the first version in R.

References

J. Moody and D. R. White. Structural cohesion and embeddedness: A hierarchical concept of social
groups. American Sociological Review, 68(1):103—127, Feb 2003.

See Also

cohesion

Examples

The graph from the Moody-White paper

mw <- graph_from_literal(1-2:3:4:5:6, 2-3:4:5:7, 3-4:6:7, 4-5:6:7,
5-6:7:21, 6-7, 7-8:11:14:19, 8-9:11:14, 9-10,
10-12:13, 11-12:14, 12-16, 13-16, 14-15, 15-16,
17-18:19:20, 18-20:21, 19-20:22:23, 20-21,
21-22:23, 22-23)

mwBlocks <- cohesive_blocks(mw)

Inspect block membership and cohesion
mwBlocks

blocks(mwBlocks)

cohesion(mwBlocks)

Save results in a Pajek file
Not run:
export_pajek(mwBlocks, mw, file="/tmp/mwBlocks.paj")

End(Not run)

Plot the results
plot(mwBlocks, mw)

The science camp network
camp <- graph_from_literal(Harry:Steve:Don:Bert - Harry:Steve:Don:Bert,
Pam:Brazey:Carol:Pat - Pam:Brazey:Carol:Pat,

Holly - Carol:Pat:Pam:Jennie:Bill,
Bill - Pauline:Michael:Lee:Holly,
Pauline - Bill:Jennie:Ann,

Jennie - Holly:Michael:Lee:Ann:Pauline,

Michael - Bill:Jennie:Ann:Lee:John,

http://home.uchicago.edu/~mcmahan/
http://home.uchicago.edu/~mcmahan/

88 compare

Ann - Michael:Jennie:Pauline,

Lee - Michael:Bill:Jennie,

Gery - Pat:Steve:Russ:John,

Russ - Steve:Bert:Gery:John,

John - Gery:Russ:Michael)
campBlocks <- cohesive_blocks(camp)

campBlocks

plot(campBlocks, camp, vertex.label=V(camp)$name, margin=-0.2,
vertex.shape="rectangle"”, vertex.size=24, vertex.size2=8,
mark.border=1, colbar=c(NA, NA,"cyan”,6"orange"))

compare Compares community structures using various metrics

Description

This function assesses the distance between two community structures.

Usage
compare(
commT,
comm2,
method = c("vi"”, "nmi"”, "split.join”, "rand”, "adjusted.rand")
)
Arguments
comm1 A communities object containing a community structure; or a numeric vector,
the membership vector of the first community structure. The membership vector
should contain the community id of each vertex, the numbering of the commu-
nities starts with one.
comm?2 A communities object containing a community structure; or a numeric vector,
the membership vector of the second community structure, in the same format
as for the previous argument.
method Character scalar, the comparison method to use. Possible values: ‘vi’ is the
variation of information (VI) metric of Meila (2003), ‘nmi’ is the normalized
mutual information measure proposed by Danon et al. (2005), ‘split.join’ is
the split-join distance of can Dongen (2000), ‘rand’ is the Rand index of Rand
(1971), ‘adjusted.rand’ is the adjusted Rand index by Hubert and Arabie (1985).
Value

A real number.

Author(s)

Tamas Nepusz <ntamas@gmail.com>

complementer 89

References

Meila M: Comparing clusterings by the variation of information. In: Scholkopf B, Warmuth MK
(eds.). Learning Theory and Kernel Machines: 16th Annual Conference on Computational Learn-
ing Theory and 7th Kernel Workshop, COLT/Kernel 2003, Washington, DC, USA. Lecture Notes
in Computer Science, vol. 2777, Springer, 2003. ISBN: 978-3-540-40720-1.

Danon L, Diaz-Guilera A, Duch J, Arenas A: Comparing community structure identification. J Stat
Mech P09008, 2005.

van Dongen S: Performance criteria for graph clustering and Markov cluster experiments. Techni-
cal Report INS-R0012, National Research Institute for Mathematics and Computer Science in the
Netherlands, Amsterdam, May 2000.

Rand WM: Objective criteria for the evaluation of clustering methods. J Am Stat Assoc 66(336):846-
850, 1971.

Hubert L and Arabie P: Comparing partitions. Journal of Classification 2:193-218, 1985.

See Also

See cluster_walktrap, cluster_spinglass, cluster_leading_eigen, cluster_edge_betweenness,
cluster_fast_greedy, cluster_label_prop cluster_louvain cluster_leiden for various
community detection methods.

Examples

g <- make_graph("Zachary")

sg <- cluster_spinglass(g)

le <- cluster_leading_eigen(g)
compare(sg, le, method="rand")
compare(membership(sg), membership(le))

complementer Complementer of a graph

Description

A complementer graph contains all edges that were not present in the input graph.

Usage

complementer(graph, loops = FALSE)

Arguments
graph The input graph, can be directed or undirected.
loops Logical constant, whether to generate loop edges.
Details

complementer creates the complementer of a graph. Only edges which are not present in the
original graph will be included in the new graph.

complementer keeps graph and vertex attriubutes, edge attributes are lost.

90 component_distribution

Value

A new graph object.

Author(s)

Gabor Csardi <csardi.gabor@gmail . com>

Examples

Complementer of a ring
g <- make_ring(10)
complementer(g)

A graph and its complementer give together the full graph
g <- make_ring(10)

gc <- complementer(g)

gu <- union(g, gc)

gu

graph.isomorphic(gu, make_full_graph(vcount(g)))

component_distribution
Connected components of a graph

Description

Calculate the maximal (weakly or strongly) connected components of a graph

Usage
component_distribution(graph, cumulative = FALSE, mul.size = FALSE, ...)
components(graph, mode = c("weak", "strong"))

Arguments
graph The graph to analyze.
cumulative Logical, if TRUE the cumulative distirubution (relative frequency) is calculated.
mul.size Logical. If TRUE the relative frequencies will be multiplied by the cluster sizes.

Additional attributes to pass to cluster, right now only mode makes sense.

mode Character string, either “weak” or “strong”. For directed graphs “weak” implies

weakly, “strong” strongly connected components to search. It is ignored for
undirected graphs.

component_wise 91

Details

is_connected decides whether the graph is weakly or strongly connected.
components finds the maximal (weakly or strongly) connected components of a graph.

count_components does almost the same as components but returns only the number of clusters
found instead of returning the actual clusters.

component_distribution creates a histogram for the maximal connected component sizes.

The weakly connected components are found by a simple breadth-first search. The strongly con-
nected components are implemented by two consecutive depth-first searches.

Value

For is_connected a logical constant.

For components a named list with three components:

membership numeric vector giving the cluster id to which each vertex belongs.
csize numeric vector giving the sizes of the clusters.
no numeric constant, the number of clusters.

For count_components an integer constant is returned.

For component_distribution a numeric vector with the relative frequencies. The length of the
vector is the size of the largest component plus one. Note that (for currently unknown reasons) the
first element of the vector is the number of clusters of size zero, so this is always zero.

Author(s)

Gabor Csardi <csardi .gabor@gmail . com>

See Also

decompose, subcomponent, groups

Examples

g <- sample_gnp(20, 1/20)
clu <- components(g)
groups(clu)

component_wise Component-wise layout

Description

This is a layout modifier function, and it can be used to calculate the layout separately for each
component of the graph.

Usage

component_wise(merge_method = "dla")

92 compose

Arguments

merge_method Merging algorithm, the method argument of merge_coords.

See Also

merge_coords, layout_.
Other layout modifiers: normalize()

Other graph layouts: add_layout_(), layout_as_bipartite(), layout_as_star(), layout_as_tree(),
layout_in_circle(), layout_nicely(), layout_on_grid(), layout_on_sphere(), layout_randomly(),
layout_with_dh(), layout_with_fr(), layout_with_gem(), layout_with_graphopt(), layout_with_kk(),
layout_with_1gl(), layout_with_mds(), layout_with_sugiyama(), layout_(), merge_coords(),
norm_coords(), normalize()

Examples

g <- make_ring(10) + make_ring(10)

g %>%
add_layout_(in_circle(), component_wise()) %>%
plot()
compose Compose two graphs as binary relations
Description

Relational composition of two graph.

Usage
compose(gl, g2, byname = "auto")
Arguments
g1 The first input graph.
g2 The second input graph.
byname A logical scalar, or the character scalar auto. Whether to perform the operation
based on symbolic vertex names. If it is auto, that means TRUE if both graphs
are named and FALSE otherwise. A warning is generated if auto and one graph,
but not both graphs are named.
Details

compose creates the relational composition of two graphs. The new graph will contain an (a,b) edge
only if there is a vertex c, such that edge (a,c) is included in the first graph and (c,b) is included in
the second graph. The corresponding operator is %c%.

The function gives an error if one of the input graphs is directed and the other is undirected.

If the byname argument is TRUE (or auto and the graphs are all named), then the operation is per-
formed based on symbolic vertex names. Otherwise numeric vertex ids are used.

consensus_tree 93

compose keeps the attributes of both graphs. All graph, vertex and edge attributes are copied to the
result. If an attribute is present in multiple graphs and would result a name clash, then this attribute
is renamed by adding suffixes: _1, _2, etc.

The name vertex attribute is treated specially if the operation is performed based on symbolic vertex
names. In this case name must be present in both graphs, and it is not renamed in the result graph.

Note that an edge in the result graph corresponds to two edges in the input, one in the first graph,
one in the second. This mapping is not injective and several edges in the result might correspond
to the same edge in the first (and/or the second) graph. The edge attributes in the result graph are
updated accordingly.

Also note that the function may generate multigraphs, if there are more than one way to find edges
(a,b) in g1 and (b,c) in g2 for an edge (a,c) in the result. See simplify if you want to get rid of the
multiple edges.

The function may create loop edges, if edges (a,b) and (b,a) are present in gl and g2, respectively,
then (a,a) is included in the result. See simplify if you want to get rid of the self-loops.

Value

A new graph object.

Author(s)

Gabor Csardi <csardi . gabor@gmail . com>

Examples

gl <- make_ring(10)

g2 <- make_star (10, mode="undirected")
gc <- compose(gl, g2)

print_all(gc)

print_all(simplify(gc))

consensus_tree Create a consensus tree from several hierarchical random graph mod-
els

Description

consensus_tree creates a consensus tree from several fitted hierarchical random graph models,
using phylogeny methods. If the hrg argument is given and start is set to TRUE, then it starts sam-
pling from the given HRG. Otherwise it optimizes the HRG log-likelihood first, and then samples
starting from the optimum.

Usage

consensus_tree(graph, hrg = NULL, start = FALSE, num.samples = 10000)

94 console

Arguments
graph The graph the models were fitted to.
hrg A hierarchical random graph model, in the form of an igraphHRG object. consensus_tree
allows this to be NULL as well, then a HRG is fitted to the graph first, from a ran-
dom starting point.
start Logical, whether to start the fitting/sampling from the supplied igraphHRG ob-
ject, or from a random starting point.
num.samples Number of samples to use for consensus generation or missing edge prediction.
Value

consensus_tree returns a list of two objects. The first is an igraphHRGConsensus object, the
second is an igraphHRG object. The igraphHRGConsensus object has the following members:

parents For each vertex, the id of its parent vertex is stored, or zero, if the vertex is the
root vertex in the tree. The first n vertex ids (from 0) refer to the original vertices
of the graph, the other ids refer to vertex groups.

weights Numeric vector, counts the number of times a given tree split occurred in the
generated network samples, for each internal vertices. The order is the same as
in the parents vector.

See Also

Other hierarchical random graph functions: fit_hrg(), hrg-methods, hrg_tree(), hrg(), predict_edges(),
print.igraphHRGConsensus(), print.igraphHRG(), sample_hrg()

console The igraph console

Description
The igraph console is a GUI windows that shows what the currently running igraph function is
doing.

Usage

console()

Details

The console can be started by calling the console function. Then it stays open, until the user closes
it.

Another way to start it to set the verbose igraph option to “tkconsole” via igraph_options. Then
the console (re)opens each time an igraph function supporting it starts; to close it, set the verbose
option to another value.

The console is written in Tcl/Tk and required the tcltk package.

Value

NULL, invisibly.

constraint 95

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

See Also

igraph_options and the verbose option.

constraint Burt’s constraint

Description

Given a graph, constraint calculates Burt’s constraint for each vertex.

Usage
constraint(graph, nodes = V(graph), weights = NULL)

Arguments
graph A graph object, the input graph.
nodes The vertices for which the constraint will be calculated. Defaults to all vertices.
weights The weights of the edges. If this is NULL and there is a weight edge attribute this
is used. If there is no such edge attribute all edges will have the same weight.
Details

Burt’s constraint is higher if ego has less, or mutually stronger related (i.e. more redundant) con-
tacts. Burt’s measure of constraint, C;, of vertex i’s ego network V;, is defined for directed and

valued graphs,
Ci= Z (pij + Z PiqPej)?
jevi\{i} a€Vi\{i.j}
for a graph of order (ie. number of vertices) N, where proportional tie strengths are defined as
_ aij + aji
B Zkevi\{i}(aik + ari)’

Dij

a;; are elements of A and the latter being the graph adjacency matrix. For isolated vertices, con-
straint is undefined.
Value

A numeric vector of constraint scores

Author(s)
Jeroen Bruggeman (https://sites.google.com/site/jebrug/jeroen-bruggeman-social-science)

and Gabor Csardi <csardi.gabor@gmail.com>

References

Burt, R.S. (2004). Structural holes and good ideas. American Journal of Sociology 110, 349-399.

https://sites.google.com/site/jebrug/jeroen-bruggeman-social-science

96 contract

Examples

g <- sample_gnp(20, 5/20)
constraint(g)

contract Contract several vertices into a single one

Description
This function creates a new graph, by merging several vertices into one. The vertices in the new
graph correspond to sets of vertices in the input graph.

Usage

contract(graph, mapping, vertex.attr.comb = igraph_opt("vertex.attr.comb"))

Arguments
graph The input graph, it can be directed or undirected.
mapping A numeric vector that specifies the mapping. Its elements correspond to the

vertices, and for each element the id in the new graph is given.
vertex.attr.comb

Specifies how to combine the vertex attributes in the new graph. Please see

attribute.combination for details.

Details
The attributes of the graph are kept. Graph and edge attributes are unchanged, vertex attributes are
combined, according to the vertex.attr.comb parameter.

Value

A new graph object.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

Examples

g <- make_ring(10)

g$name <- "Ring”

V(g)$name <- letters[1:vcount(g)]
E(g)$weight <- runif(ecount(g))

g2 <- contract(g, rep(1:5, each=2),
vertex.attr.comb=toString)

graph and edge attributes are kept, vertex attributes are
combined using the 'toString' function.
print(g2, g=TRUE, v=TRUE, e=TRUE)

convex_hull 97

convex_hull Convex hull of a set of vertices

Description

Calculate the convex hull of a set of points, i.e. the covering polygon that has the smallest area.

Usage

convex_hull(data)

Arguments

data The data points, a numeric matrix with two columns.

Value

A named list with components:

resverts The indices of the input vertices that constritute the convex hull.
rescoords The coordinates of the corners of the convex hull.
Author(s)

Tamas Nepusz <ntamas@gmail . com>

References

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to
Algorithms, Second Edition. MIT Press and McGraw-Hill, 2001. ISBN 0262032937. Pages 949-
955 of section 33.3: Finding the convex hull.

Examples

M <- cbind(runif(100), runif(100))
convex_hull(M)

coreness K-core decomposition of graphs

Description

The k-core of graph is a maximal subgraph in which each vertex has at least degree k. The coreness
of a vertex is k if it belongs to the k-core but not to the (k+1)-core.

Usage

coreness(graph, mode = c("all", "out”, "in"))

98 count_isomorphisms

Arguments
graph The input graph, it can be directed or undirected
mode The type of the core in directed graphs. Character constant, possible values: in:
in-cores are computed, out: out-cores are computed, all: the corresponding
undirected graph is considered. This argument is ignored for undirected graphs.
Details

The k-core of a graph is the maximal subgraph in which every vertex has at least degree k. The
cores of a graph form layers: the (k+1)-core is always a subgraph of the k-core.

This function calculates the coreness for each vertex.

Value

Numeric vector of integer numbers giving the coreness of each vertex.

Author(s)

Gabor Csardi <csardi . gabor@gmail . com>

References

Vladimir Batagelj, Matjaz Zaversnik: An O(m) Algorithm for Cores Decomposition of Networks,
2002

Seidman S. B. (1983) Network structure and minimum degree, Social Networks, 5, 269-287.

See Also

degree

Examples

g <- make_ring(10)
g <- add_edges(g, c(1,2, 2,3, 1,3))
coreness(g) # small core triangle in a ring

count_isomorphisms Count the number of isomorphic mappings between two graphs

Description

Count the number of isomorphic mappings between two graphs

Usage

count_isomorphisms(graphl, graph2, method = "vf2", ...)

count_motifs 99

Arguments
graph The first graph.
graph2 The second graph.
method Currently only ‘vf2’ is supported, see isomorphic for details about it and extra
arguments.
Passed to the individual methods.
Value

Number of isomorphic mappings between the two graphs.

References

LP Cordella, P Foggia, C Sansone, and M Vento: An improved algorithm for matching large graphs,
Proc. of the 3rd IAPR TC-15 Workshop on Graphbased Representations in Pattern Recognition,
149-159, 2001.

See Also

Other graph isomorphism: count_subgraph_isomorphisms(), graph_from_isomorphism_class(),
isomorphic(), isomorphism_class(), isomorphisms(), subgraph_isomorphic(), subgraph_isomorphisms()

Examples

colored graph isomorphism
gl <- make_ring(10)
g2 <- make_ring(10)
isomorphic(gl, g2)

V(gl1)$color <- rep(1:2, length = vcount(gl))

V(g2)$color <- rep(2:1, length = vcount(g2))

consider colors by default

count_isomorphisms(gl, g2)

ignore colors

count_isomorphisms(gl, g2, vertex.colorl = NULL,
vertex.color2 = NULL)

count_motifs Graph motifs

Description
Graph motifs are small connected subgraphs with a well-defined structure. These functions search
a graph for various motifs.

Usage

count_motifs(graph, size = 3, cut.prob = rep(@, size))

100 count_subgraph_isomorphisms

Arguments
graph Graph object, the input graph.
size The size of the motif, currently 3 and 4 are supported only.
cut.prob Numeric vector giving the probabilities that the search graph is cut at a certain
level. Its length should be the same as the size of the motif (the size argument).
By default no cuts are made.
Details

count_motif's calculates the total number of motifs of a given size in graph.

Value

count_motifs returns a numeric scalar.

See Also

isomorphism_class

Other graph motifs: motifs(), sample_motifs()

Examples

g <- barabasi.game(100)
motifs(g, 3)
count_motifs(g, 3)
sample_motifs(g, 3)

count_subgraph_isomorphisms

Count the isomorphic mappings between a graph and the subgraphs
of another graph

Description

Count the isomorphic mappings between a graph and the subgraphs of another graph

Usage
count_subgraph_isomorphisms(pattern, target, method = c("lad”, "vf2"), ...)
Arguments
pattern The smaller graph, it might be directed or undirected. Undirected graphs are
treated as directed graphs with mutual edges.
target The bigger graph, it might be directed or undirected. Undirected graphs are
treated as directed graphs with mutual edges.
method The method to use. Possible values: ‘lad’, ‘vf2’. See their details below.

Additional arguments, passed to the various methods.

count_triangles 101

Value

Logical scalar, TRUE if the pattern is isomorphic to a (possibly induced) subgraph of target.

‘lad’ method

This is the LAD algorithm by Solnon, see the reference below. It has the following extra arguments:

domains If not NULL, then it specifies matching restrictions. It must be a list of target vertex
sets, given as numeric vertex ids or symbolic vertex names. The length of the list must be
vceount(pattern) and for each vertex in pattern it gives the allowed matching vertices in
target. Defaults to NULL.

induced Logical scalar, whether to search for an induced subgraph. It is FALSE by default.

time.limit The processor time limit for the computation, in seconds. It defaults to Inf, which
means no limit.

‘vf2’ method

This method uses the VF2 algorithm by Cordella, Foggia et al., see references below. It supports
vertex and edge colors and have the following extra arguments:

vertex.colorl, vertex.color2 Optional integer vectors giving the colors of the vertices for colored
graph isomorphism. If they are not given, but the graph has a “color” vertex attribute, then
it will be used. If you want to ignore these attributes, then supply NULL for both of these
arguments. See also examples below.

edge.colorl, edge.color2 Optional integer vectors giving the colors of the edges for edge-colored
(sub)graph isomorphism. If they are not given, but the graph has a “color” edge attribute,
then it will be used. If you want to ignore these attributes, then supply NULL for both of these
arguments.

References

LP Cordella, P Foggia, C Sansone, and M Vento: An improved algorithm for matching large graphs,
Proc. of the 3rd IAPR TC-15 Workshop on Graphbased Representations in Pattern Recognition,
149-159, 2001.

C. Solnon: AllDifferent-based Filtering for Subgraph Isomorphism, Artificial Intelligence 174(12-
13):850-864, 2010.
See Also

Other graph isomorphism: count_isomorphisms(), graph_from_isomorphism_class(), isomorphic(),
isomorphism_class(), isomorphisms(), subgraph_isomorphic(), subgraph_isomorphisms()

count_triangles Find triangles in graphs

Description

Count how many triangles a vertex is part of, in a graph, or just list the triangles of a graph.

102 count_triangles

Usage

count_triangles(graph, vids = V(graph))

Arguments
graph The input graph. It might be directed, but edge directions are ignored.
vids The vertices to query, all of them by default. This might be a vector of numeric
ids, or a character vector of symbolic vertex names for named graphs.
Details

triangles lists all triangles of a graph. For efficiency, all triangles are returned in a single vector.
The first three vertices belong to the first triangle, etc.

count_triangles counts how many triangles a vertex is part of.

Value

For triangles a numeric vector of vertex ids, the first three vertices belong to the first triangle
found, etc.

For count_triangles a numeric vector, the number of triangles for all vertices queried.

Author(s)

Gabor Csardi <csardi .gabor@gmail . com>

See Also

transitivity

Examples

A small graph

kite <- make_graph("Krackhardt_Kite")
plot(kite)

matrix(triangles(kite), nrow=3)

Adjacenct triangles
atri <- count_triangles(kite)
plot(kite, vertex.label=atri)

Always true
sum(count_triangles(kite)) == length(triangles(kite))

Should match, local transitivity is the

number of adjacent triangles divided by the number

of adjacency triples

transitivity(kite, type="local")

count_triangles(kite) / (degree(kite) * (degree(kite)-1)/2)

curve_multiple 103

curve_multiple Optimal edge curvature when plotting graphs

Description

If graphs have multiple edges, then drawing them as straight lines does not show them when plotting
the graphs; they will be on top of each other. One solution is to bend the edges, with diffenent
curvature, so that all of them are visible.

Usage

curve_multiple(graph, start = 0.5)

Arguments
graph The input graph.
start The curvature at the two extreme edges. All edges will have a curvature between
-start and start, spaced equally.
Details

curve_multiple calculates the optimal edge.curved vector for plotting a graph with multiple
edges, so that all edges are visible.

Value

A numeric vector, its length is the number of edges in the graph.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

See Also
igraph.plotting for all plotting parameters, plot.igraph, tkplot and rglplot for plotting

functions.

Examples

g <- graph(c(o,1,1,0,1,2,1,3,1,3,1,3,
2,3,2,3,2,3,2,3,0,1)+1)

curve_multiple(g)

Not run:
set.seed(42)
plot(g)

End(Not run)

104 decompose

decompose Decompose a graph into components

Description

Creates a separate graph for each component of a graph.

Usage
decompose(graph, mode = c("weak”, "strong"), max.comps = NA, min.vertices = 0)
Arguments
graph The original graph.
mode Character constant giving the type of the components, wither weak for weakly
connected components or strong for strongly connected components.
max.comps The maximum number of components to return. The first max.comps compo-

nents will be returned (which hold at least min.vertices vertices, see the next
parameter), the others will be ignored. Supply NA here if you don’t want to limit
the number of components.

min.vertices The minimum number of vertices a component should contain in order to place
it in the result list. Eg. supply 2 here to ignore isolate vertices.

Value

A list of graph objects.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

See Also

is_connected to decide whether a graph is connected, components to calculate the connected
components of a graph.

Examples

the diameter of each component in a random graph
g <- sample_gnp(1000, 1/1000)

components <- decompose(g, min.vertices=2)
sapply(components, diameter)

degree

105

degree

Degree and degree distribution of the vertices

Description

The degree of a vertex is its most basic structural property, the number of its adjacent edges.

Usage

degree(
graph,

v = V(graph),

mode = c("all”, "out", "in", "total"),

loops =
normalized = FALSE
)
degree_distribution(graph, cumulative = FALSE, ...)
Arguments
graph The graph to analyze.
v The ids of vertices of which the degree will be calculated.
mode Character string, “out” for out-degree, “in” for in-degree or “total” for the sum
of the two. For undirected graphs this argument is ignored. “all” is a synonym
of “total”.
loops Logical; whether the loop edges are also counted.
normalized Logical scalar, whether to normalize the degree. If TRUE then the result is divided
by n — 1, where n is the number of vertices in the graph.
cumulative Logical; whether the cumulative degree distribution is to be calculated.
Additional arguments to pass to degree, eg. mode is useful but also v and loops
make sense.
Value

For degree a numeric vector of the same length as argument v.

For degree_distribution a numeric vector of the same length as the maximum degree plus one.
The first element is the relative frequency zero degree vertices, the second vertices with degree one,

etc.

Author(s)

Gabor Csardi <csardi.gabor@gmail . com>

Examples

g <- make_ring(10)

degree(g)

g2 <- sample_gnp(1000, 10/1000)
degree_distribution(g2)

106 delete_edges

delete_edge_attr Delete an edge attribute

Description

Delete an edge attribute

Usage

delete_edge_attr(graph, name)

Arguments

graph The graph

name The name of the edge attribute to delete.
Value

The graph, with the specified edge attribute removed.

See Also

Other graph attributes: delete_graph_attr(), delete_vertex_attr(), edge_attr<-(), edge_attr_names(),
edge_attr(), graph_attr<-(), graph_attr_names(), graph_attr(), igraph-dollar, igraph-vs-attributes,
set_edge_attr(), set_graph_attr(), set_vertex_attr(), vertex_attr<-(), vertex_attr_names(),
vertex_attr()

Examples

g <- make_ring(10) %>%

set_edge_attr("name”, value = LETTERS[1:10])
edge_attr_names(g)
g2 <- delete_edge_attr(g, "name")
edge_attr_names(g2)

delete_edges Delete edges from a graph

Description

Delete edges from a graph

Usage
delete_edges(graph, edges)

Arguments
graph The input graph.

edges The edges to remove, specified as an edge sequence.

delete_graph_attr 107

Value

The graph, with the edges removed.

See Also

Other functions for manipulating graph structure: +.igraph(), add_edges(), add_vertices(),
delete_vertices(), edge(), igraph-minus, path(), vertex()

Examples

g <- make_ring(10) %>%
delete_edges(seq(1, 9, by = 2))
g

g <- make_ring(10) %>%
delete_edges(”10]1")
g

delete_graph_attr Delete a graph attribute

Description

Delete a graph attribute

Usage

delete_graph_attr(graph, name)

Arguments

graph The graph.

name Name of the attribute to delete.
Value

The graph, with the specified attribute removed.

See Also

Other graph attributes: delete_edge_attr(),delete_vertex_attr(), edge_attr<-(), edge_attr_names(),
edge_attr(), graph_attr<-(), graph_attr_names(), graph_attr(), igraph-dollar, igraph-vs-attributes,
set_edge_attr(), set_graph_attr(), set_vertex_attr(), vertex_attr<-(), vertex_attr_names(),
vertex_attr()

Examples

g <- make_ring(10)
graph_attr_names(g)

g2 <- delete_graph_attr(g, "name")
graph_attr_names(g2)

108 delete_vertices

delete_vertex_attr Delete a vertex attribute

Description

Delete a vertex attribute

Usage

delete_vertex_attr(graph, name)

Arguments

graph The graph

name The name of the vertex attribute to delete.
Value

The graph, with the specified vertex attribute removed.

See Also

Other graph attributes: delete_edge_attr(), delete_graph_attr(), edge_attr<-(), edge_attr_names(),
edge_attr(), graph_attr<-(), graph_attr_names(), graph_attr(), igraph-dollar, igraph-vs-attributes,
set_edge_attr(), set_graph_attr(), set_vertex_attr(), vertex_attr<-(), vertex_attr_names(),
vertex_attr()

Examples

g <- make_ring(10) %>%

set_vertex_attr(”"name”, value = LETTERS[1:10])
vertex_attr_names(g)
g2 <- delete_vertex_attr(g, "name")
vertex_attr_names(g2)

delete_vertices Delete vertices from a graph

Description

Delete vertices from a graph

Usage

delete_vertices(graph, v)

Arguments

graph The input graph.

v The vertices to remove, a vertex sequence.

dfs 109

Value

The graph, with the vertices removed.

See Also

Other functions for manipulating graph structure: +.igraph(), add_edges(), add_vertices(),
delete_edges(), edge(), igraph-minus, path(), vertex()

Examples

g <- make_ring(10) %>%

set_vertex_attr(”"name”, value = LETTERS[1:101])
g
v(g)

g2 <- delete_vertices(g, c(1,5)) %>%
delete_vertices("B")

g2

V(g2)

dfs Depth-first search

Description

Depth-first search is an algorithm to traverse a graph. It starts from a root vertex and tries to go
quickly as far from as possible.

Usage
dfs(
graph,
root,
neimode = c("out”, "in"”, "all", "total"),
unreachable = TRUE,
order = TRUE,

order.out = FALSE,
father = FALSE,
dist = FALSE,
in.callback = NULL,
out.callback = NULL,

extra = NULL,
rho = parent.frame()
)
Arguments
graph The input graph.
root The single root vertex to start the search from.
neimode For directed graphs specifies the type of edges to follow. ‘out’ follows outgo-

ing, ‘in’ incoming edges. ‘all’ ignores edge directions completely. ‘total’ is a
synonym for ‘all’. This argument is ignored for undirected graphs.

110

unreachable

order

order.out

father
dist

in.callback

out.callback

extra

rho

Details

dfs

Logical scalar, whether the search should visit the vertices that are unreachable
from the given root vertex (or vertices). If TRUE, then additional searches are
performed until all vertices are visited.

Logical scalar, whether to return the DFS ordering of the vertices.

Logical scalar, whether to return the ordering based on leaving the subtree of the
vertex.

Logical scalar, whether to return the father of the vertices.
Logical scalar, whether to return the distance from the root of the search tree.

If not NULL, then it must be callback function. This is called whenever a vertex
is visited. See details below.

If not NULL, then it must be callback function. This is called whenever the sub-
tree of a vertex is completed by the algorithm. See details below.

Additional argument to supply to the callback function.

The environment in which the callback function is evaluated.

The callback functions must have the following arguments:

graph The input graph is passed to the callback function here.

data A named numeric vector, with the following entries: ‘vid’, the vertex that was just visited and
‘dist’, its distance from the root of the search tree.

extra The extra argument.

See examples below on how to use the callback functions.

Value

A named list with the following entries:

root

neimode

order

order.out
father
dist

Numeric scalar. The root vertex that was used as the starting point of the search.

Character scalar. The neimode argument of the function call. Note that for
undirected graphs this is always ‘all’, irrespectively of the supplied value.

Numeric vector. The vertex ids, in the order in which they were visited by the
search.

Numeric vector, the vertex ids, in the order of the completion of their subtree.
Numeric vector. The father of each vertex, i.e. the vertex it was discovered from.

Numeric vector, for each vertex its distance from the root of the search tree.

Note that order, order.out, father, and dist might be NULL if their corresponding argument is
FALSE, i.e. if their calculation is not requested.

Author(s)

Gabor Csardi <csardi . gabor@gmail . com>

See Also

bf's for breadth-first search.

diameter

Examples

111

A graph with two separate trees
dfs(make_tree(10) %du% make_tree(10), root=1, "out",
TRUE, TRUE, TRUE, TRUE)

How to use a callback
f.in <- function(graph, data, extra) {

cat("in:", paste(collapse=", ", data), "\n")
FALSE

3

f.out <- function(graph, data, extra) {
cat("out:", paste(collapse=", ", data), "\n")
FALSE

}

tmp <- dfs(make_tree(10), root=1, "out",

in.callback=f.in, out.callback=f.out)

Terminate after the first component, using a callback
f.out <- function(graph, data, extra) {

data['vid'] ==

}

tmp <- dfs(make_tree(10) %du% make_tree(10), root=1,

out.callback=f.out)

diameter

Diameter of a graph

Description

The diameter of a graph is the length of the longest geodesic.

Usage

diameter(graph, directed = TRUE, unconnected = TRUE, weights = NULL)

Arguments

graph

directed

unconnected

weights

The graph to analyze.

Logical, whether directed or undirected paths are to be considered. This is ig-
nored for undirected graphs.

Logical, what to do if the graph is unconnected. If FALSE, the function will
return a number that is one larger the largest possible diameter, which is always
the number of vertices. If TRUE, the diameters of the connected components
will be calculated and the largest one will be returned.

Optional positive weight vector for calculating weighted distances. If the graph
has a weight edge attribute, then this is used by default.

112 difference

Details

The diameter is calculated by using a breadth-first search like method.

get_diameter returns a path with the actual diameter. If there are many shortest paths of the length
of the diameter, then it returns the first one found.

farthest_vertices returns two vertex ids, the vertices which are connected by the diameter path.

Value

A numeric constant for diameter, a numeric vector for get_diameter. farthest_vertices re-
turns a list with two entries:

e vertices The two vertices that are the farthest.

e distance Their distance.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

See Also

distances

Examples

g <- make_ring(10)

g2 <- delete_edges(g, c(1,2,1,10))
diameter (g2, unconnected=TRUE)
diameter (g2, unconnected=FALSE)

Weighted diameter

set.seed(1)

g <- make_ring(10)

E(g)$weight <- sample(seq_len(ecount(g)))
diameter(g)

get_diameter(g)

diameter(g, weights=NA)

get_diameter(g, weights=NA)

difference Difference of two sets

Description

This is an S3 generic function. See methods("difference”) for the actual implementations for
various S3 classes. Initially it is implemented for igraph graphs (difference of edges in two graphs),
and igraph vertex and edge sequences. See difference.igraph, and difference.igraph.vs.

Usage
difference(...)

difference.igraph 113

Arguments
Arguments, their number and interpretation depends on the function that imple-
ments difference.

Value

Depends on the function that implements this method.

difference.igraph Difference of graphs

Description

The difference of two graphs are created.

Usage
S3 method for class 'igraph'
difference(big, small, byname = "auto”, ...)
Arguments
big The left hand side argument of the minus operator. A directed or undirected
graph.
small The right hand side argument of the minus operator. A directed ot undirected
graph.
byname A logical scalar, or the character scalar auto. Whether to perform the operation

based on symbolic vertex names. If it is auto, that means TRUE if both graphs
are named and FALSE otherwise. A warning is generated if auto and one graph,
but not both graphs are named.

Ignored, included for S3 compatibility.

Details

difference creates the difference of two graphs. Only edges present in the first graph but not in
the second will be be included in the new graph. The corresponding operator is %m%.

If the byname argument is TRUE (or auto and the graphs are all named), then the operation is per-
formed based on symbolic vertex names. Otherwise numeric vertex ids are used.

difference keeps all attributes (graph, vertex and edge) of the first graph.

Note that big and small must both be directed or both be undirected, otherwise an error message
is given.

Value

A new graph object.

Author(s)

Gabor Csardi <csardi.gabor@gmail . com>

114

Examples

Create a wheel graph
wheel <- union(make_ring(10),

make_star(11, center=11, mode="undirected"”))

V(wheel)$name <- letters[seq_len(vcount(wheel))]

Subtract a star graph from it

sstar <- make_star(6, center=6, mode="undirected")
V(sstar)$name <- letters[c(1,3,5,7,9,11)]

G <- wheel %m% sstar

print_all(G)

plot(G, layout=layout_nicely(wheel))

difference.igraph.es

difference.igraph.es Difference of edge sequences

Description

Difference of edge sequences

Usage
S3 method for class 'igraph.es'
difference(big, small, ...)
Arguments
big The ‘big’ edge sequence.
small The ‘small’ edge sequence.

Ignored, included for S3 signature compatibility.

Details

They must belong to the same graph. Note that this function has ‘set’ semantics and the multiplicity

of edges is lost in the result.

Value

An edge sequence that contains only edges that are part of big, but not part of small.

See Also

Other vertex and edge sequence operations: c.igraph.es(), c.igraph.vs(),difference.igraph.vs(),
igraph-es-indexing?2, igraph-es-indexing, igraph-vs-indexing2, igraph-vs-indexing, intersection.igrap
intersection.igraph.vs(), rev.igraph.es(), rev.igraph.vs(),union.igraph.es(), union.igraph.vs(),

unique.igraph.es(), unique.igraph.vs()

Examples

g <- make_(ring(10), with_vertex_(name = LETTERS[1:10]))
difference(V(g), V(g)[6:10])

difference.igraph.vs

115

difference.igraph.vs Difference of vertex sequences

Description

Difference of vertex sequences

Usage

S3 method for class 'igraph.vs'
difference(big, small, ...)

Arguments
big The ‘big’ vertex sequence.
small The ‘small’ vertex sequence.
Ignored, included for S3 signature compatibility.
Details

They must belong to the same graph. Note that this function has ‘set’ semantics and the multiplicity

of vertices is lost in the result.

Value

A vertex sequence that contains only vertices that are part of big, but not part of small.

See Also

Other vertex and edge sequence operations: c.igraph.es(), c.igraph.vs(),difference.igraph.es(),
igraph-es-indexing2, igraph-es-indexing, igraph-vs-indexing2, igraph-vs-indexing, intersection.igrap
intersection.igraph.vs(), rev.igraph.es(), rev.igraph.vs(),union.igraph.es(),union.igraph.vs(),

unique.igraph.es(), unique.igraph.vs()

Examples

g <- make_(ring(10), with_vertex_(name = LETTERS[1:10]))

difference(V(g), V(g)[6:10])

dim_select Dimensionality selection for singular values using profile likelihood.

Description

Select the number of significant singular values, by finding the ‘elbow’ of the scree plot, in a prin-

cipled way.

Usage

dim_select(sv)

116 dim_select

Arguments

sV A numeric vector, the ordered singular values.

Details

The input of the function is a numeric vector which contains the measure of ‘importance’ for each
dimension.

For spectral embedding, these are the singular values of the adjacency matrix. The singular values
are assumed to be generated from a Gaussian mixture distribution with two components that have
different means and same variance. The dimensionality d is chosen to maximize the likelihood
when the d largest singular values are assigned to one component of the mixture and the rest of the
singular values assigned to the other component.

This function can also be used for the general separation problem, where we assume that the left
and the right of the vector are coming from two Normal distributions, with different means, and we
want to know their border. See examples below.

Value

A numeric scalar, the estimate of d.

Author(s)

Gabor Csardi <csardi . gabor@gmail . com>

References

M. Zhu, and A. Ghodsi (2006). Automatic dimensionality selection from the scree plot via the use
of profile likelihood. Computational Statistics and Data Analysis, Vol. 51, 918-930.

See Also

embed_adjacency_matrix

Examples

Generate the two groups of singular values with

Gaussian mixture of two components that have different means
sing.vals <- c(rnorm (10, mean=1, sd=1), rnorm(10, mean=3, sd=1))
dim.chosen <- dim_select(sing.vals)

dim.chosen

Sample random vectors with multivariate normal distribution

and normalize to unit length

lpvs <- matrix(rnorm(200), 10, 20)

lpvs <- apply(lpvs, 2, function(x) { (abs(x) / sqgrt(sum(x*2))) })
RDP.graph <- sample_dot_product(lpvs)

dim_select(embed_adjacency_matrix(RDP.graph, 10)$D)

Sample random vectors with the Dirichlet distribution
lpvs.dir <- sample_dirichlet(n=20, rep(1, 10))
RDP.graph.2 <- sample_dot_product(lpvs.dir)

dim_select(embed_adjacency_matrix(RDP.graph.2, 10)$D)

Sample random vectors from hypersphere with radius 1.

disjoint_union 117

lpvs.sph <- sample_sphere_surface(dim=10, n=20, radius=1)
RDP.graph.3 <- sample_dot_product(lpvs.sph)
dim_select(embed_adjacency_matrix(RDP.graph.3, 10)$D)

disjoint_union Disjoint union of graphs

Description

The union of two or more graphs are created. The graphs are assumed to have disjoint vertex sets.

Usage

disjoint_union(...)

X %du% y

Arguments
Graph objects or lists of graph objects.
X,y Graph objects.
Details

disjoint_union creates a union of two or more disjoint graphs. Thus first the vertices in the
second, third, etc. graphs are relabeled to have completely disjoint graphs. Then a simple union is
created. This function can also be used via the %du% operator.

graph.disjont.union handles graph, vertex and edge attributes. In particular, it merges vertex
and edge attributes using the basic c() function. For graphs that lack some vertex/edge attribute,
the corresponding values in the new graph are set to NA. Graph attributes are simply copied to the
result. If this would result a name clash, then they are renamed by adding suffixes: _1, _2, etc.

Note that if both graphs have vertex names (ie. a name vertex attribute), then the concatenated vertex
names might be non-unique in the result. A warning is given if this happens.

An error is generated if some input graphs are directed and others are undirected.

Value

A new graph object.

Author(s)

Gabor Csardi <csardi .gabor@gmail . com>

Examples

A star and a ring

gl <- make_star(10, mode="undirected")
V(g1)$name <- letters[1:10]

g2 <- make_ring(10)

V(g2)$name <- letters[11:20]
print_all(gl %du% g2)

118

distance_table

distance_table

Shortest (directed or undirected) paths between vertices

Description

distances calculates the length of all the shortest paths from or to the vertices in the network.
shortest_paths calculates one shortest path (the path itself, and not just its length) from or to the

given vertex.

Usage

distance_table(graph, directed = TRUE)

mean_distance(graph, directed = TRUE, unconnected = TRUE)

distances(
graph,

v = V(graph),

to = V(graph),
mode = c("all”, "out”, "in"),

weights =

NULL,

algorithm = c("automatic"”, "unweighted”, "dijkstra”, "bellman-ford”, "johnson")

)

shortest_paths(

graph,
from,

to = V(graph),

mode = c("out”, "all"”, "in"),

weights = NULL,

output = c("vpath”, "epath”, "both"),
predecessors = FALSE,

inbound. edges

)

= FALSE

all_shortest_paths(

graph,
from,

to = V(graph),
mode = c("out”, "all", "in"),
weights = NULL

Arguments
graph

directed

unconnected

The graph to work on.

Whether to consider directed paths in directed graphs, this argument is ignored
for undirected graphs.

What to do if the graph is unconnected (not strongly connected if directed paths
are considered). If TRUE only the lengths of the existing paths are considered

distance_table

to

mode

weights

algorithm

from

output

predecessors

inbound. edges

Details

119

and averaged; if FALSE the length of the missing paths are counted having
length vcount(graph), one longer than the longest possible geodesic in the
network.

Numeric vector, the vertices from which the shortest paths will be calculated.

Numeric vector, the vertices to which the shortest paths will be calculated. By
default it includes all vertices. Note that for distances every vertex must be
included here at most once. (This is not required for shortest_paths.

Character constant, gives whether the shortest paths to or from the given ver-
tices should be calculated for directed graphs. If out then the shortest paths
from the vertex, if in then fo it will be considered. If all, the default, then the
corresponding undirected graph will be used, ie. not directed paths are searched.
This argument is ignored for undirected graphs.

Possibly a numeric vector giving edge weights. If this is NULL and the graph has
a weight edge attribute, then the attribute is used. If this is NA then no weights
are used (even if the graph has a weight attribute).

Which algorithm to use for the calculation. By default igraph tries to select the
fastest suitable algorithm. If there are no weights, then an unweighted breadth-
first search is used, otherwise if all weights are positive, then Dijkstra’s algo-
rithm is used. If there are negative weights and we do the calculation for more
than 100 sources, then Johnson’s algorithm is used. Otherwise the Bellman-
Ford algorithm is used. You can override igraph’s choice by explicitly giving
this parameter. Note that the igraph C core might still override your choice in
obvious cases, i.e. if there are no edge weights, then the unweighted algorithm
will be used, regardless of this argument.

Numeric constant, the vertex from or to the shortest paths will be calculated.
Note that right now this is not a vector of vertex ids, but only a single vertex.

Character scalar, defines how to report the shortest paths. “vpath” means that
the vertices along the paths are reported, this form was used prior to igraph
version 0.6. “epath” means that the edges along the paths are reported. “both”
means that both forms are returned, in a named list with components “vpath”
and “epath”.

Logical scalar, whether to return the predecessor vertex for each vertex. The
predecessor of vertex i in the tree is the vertex from which vertex i was reached.
The predecessor of the start vertex (in the from argument) is itself by definition.
If the predecessor is zero, it means that the given vertex was not reached from
the source during the search. Note that the search terminates if all the vertices
in to are reached.

Logical scalar, whether to return the inbound edge for each vertex. The inbound
edge of vertex i in the tree is the edge via which vertex i was reached. The
start vertex and vertices that were not reached during the search will have zero
in the corresponding entry of the vector. Note that the search terminates if all
the vertices in to are reached.

The shortest path, or geodesic between two pair of vertices is a path with the minimal number of
vertices. The functions documented in this manual page all calculate shortest paths between vertex

pairs.

distances calculates the lengths of pairwise shortest paths from a set of vertices (from) to an-
other set of vertices (to). It uses different algorithms, depending on the algorithm argument

120 distance_table

and the weight edge attribute of the graph. The implemented algorithms are breadth-first search
(‘unweighted’), this only works for unweighted graphs; the Dijkstra algorithm (‘dijkstra’), this
works for graphs with non-negative edge weights; the Bellman-Ford algorithm (‘bellman-ford’),
and Johnson’s algorithm (‘" johnson"’). The latter two algorithms work with arbitrary edge weights,
but (naturally) only for graphs that don’t have a negative cycle.

ns

igraph can choose automatically between algorithms, and chooses the most efficient one that is ap-
propriate for the supplied weights (if any). For automatic algorithm selection, supply ‘automatic’
as the algorithm argument. (This is also the default.)

shortest_paths calculates a single shortest path (i.e. the path itself, not just its length) between
the source vertex given in from, to the target vertices given in to. shortest_paths uses breadth-
first search for unweighted graphs and Dijkstra’s algorithm for weighted graphs. The latter only
works if the edge weights are non-negative.

all_shortest_paths calculates all shortest paths between pairs of vertices. More precisely, be-
tween the from vertex to the vertices given in to. It uses a breadth-first search for unweighted graphs
and Dijkstra’s algorithm for weighted ones. The latter only supports non-negative edge weights.

mean_distance calculates the average path length in a graph, by calculating the shortest paths
between all pairs of vertices (both ways for directed graphs). This function does not consider edge
weights currently and uses a breadth-first search.

distance_table calculates a histogram, by calculating the shortest path length between each pair
of vertices. For directed graphs both directions are considered, so every pair of vertices appears
twice in the histogram.

Value

For distances a numeric matrix with length(to) columns and length(v) rows. The shortest
path length from a vertex to itself is always zero. For unreachable vertices Inf is included.

For shortest_paths a named list with four entries is returned:

vpath This itself is a list, of length length(to); list element i contains the vertex
ids on the path from vertex from to vertex to[i] (or the other way for directed
graphs depending on the mode argument). The vector also contains from and i
as the first and last elements. If from is the same as i then it is only included
once. If there is no path between two vertices then a numeric vector of length
zero is returned as the list element. If this output is not requested in the output
argument, then it will be NULL.

epath This is a list similar to vpath, but the vectors of the list contain the edge ids
along the shortest paths, instead of the vertex ids. This entry is set to NULL if it
is not requested in the output argument.

predecessors Numeric vector, the predecessor of each vertex in the to argument, or NULL if it
was not requested.

inbound_edges Numeric vector, the inbound edge for each vertex, or NULL, if it was not re-
quested.

For all_shortest_paths a list is returned, each list element contains a shortest path from from to
a vertex in to. The shortest paths to the same vertex are collected into consecutive elements of the
list.

For mean_distance a single number is returned.

distance_table returns a named list with two entries: res is a numeric vector, the histogram of
distances, unconnected is a numeric scalar, the number of pairs for which the first vertex is not
reachable from the second. The sum of the two entries is always n(n — 1) for directed graphs and
n(n — 1)/2 for undirected graphs.

diverging_pal 121

Author(s)

Gabor Csardi <csardi .gabor@gmail . com>

References

West, D.B. (1996). Introduction to Graph Theory. Upper Saddle River, N.J.: Prentice Hall.

Examples

g <- make_ring(10)
distances(g)

shortest_paths(g, 5)
all_shortest_paths(g, 1, 6:8)
mean_distance(g)

Weighted shortest paths

el <- matrix(nc=3, byrow=TRUE,

c(1,2,0, 1,3,2, 1,4,1, 2,3,0, 2,5,5, 2,6,2, 3,2,1, 3,4,1,
3,7,1, 4,3,0, 4,7,2, 5 6,2, 5,8,8, 6,3,2, 6,7,1, 6,9,1,
6,10,3, 8,6,1, 8,9,1, 9,10,4))

g2 <- add_edges(make_empty_graph(10), t(el[,1:2]), weight=el[,3])
distances(g2, mode="out")

diverging_pal Diverging palette

Description

This is the ‘PuOr’ palette from https://colorbrewer2.org/. It has at most eleven colors.

Usage
diverging_pal(n)

Arguments

n The number of colors in the palette. The maximum is eleven currently.

Details

This is similar to sequential_pal, but it also puts emphasis on the mid-range values, plus the the
two extreme ends. Use this palette, if you have such a quantity to mark with vertex colors.

Value

A character vector of RGB color codes.

See Also

Other palettes: categorical_pal(), r_pal(), sequential_pal()

https://colorbrewer2.org/

122 diversity

Examples

Not run:

library(igraphdata)

data(foodwebs)

fw <- foodwebs[[1]] %>%
induced_subgraph(V(.)[ECO == 1]) %>%
add_layout_(with_fr()) %>%
set_vertex_attr(”label”, value = seq_len(gorder(.))) %>%
set_vertex_attr("size", value = 10) %>%
set_edge_attr("arrow.size”, value = 0.3)

V(fw)$color <- scales::dscale(V(fw)$Biomass %>% cut(10), diverging_pal)
plot(fw)

data(karate)

karate <- karate %>%
add_layout_(with_kk()) %>%
set_vertex_attr(”"size", value = 10)

V(karate)$color <- scales::dscale(degree(karate) %>% cut(5), diverging_pal)
plot(karate)

End(Not run)

diversity Graph diversity

Description

Calculates a measure of diversity for all vertices.

Usage
diversity(graph, weights = NULL, vids = V(graph))

Arguments
graph The input graph. Edge directions are ignored.
weights NULL, or the vector of edge weights to use for the computation. If NULL, then the
‘weight’ attibute is used. Note that this measure is not defined for unweighted
graphs.
vids The vertex ids for which to calculate the measure.
Details

The diversity of a vertex is defined as the (scaled) Shannon entropy of the weights of its incident
edges:

_ H()

~ logk;

D(i)
and

ki
H(i) == pijlogpij,
j=1

dominator_tree 123

where

_ Wi

= Zk"
=1

and k; is the (total) degree of vertex ¢, w;; is the weight of the edge(s) between vertices ¢ and j.

Dij Vit

For vertices with degree less than two the function returns NaN.

Value

A numeric vector, its length is the number of vertices.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

References

Nathan Eagle, Michael Macy and Rob Claxton: Network Diversity and Economic Development,
Science 328, 1029-1031, 2010.

Examples

gl <- sample_gnp(20, 2/20)

g2 <- sample_gnp(20, 2/20)

g3 <- sample_gnp(20, 5/20)
E(gl)$weight <- 1

E(g2)$weight <- runif(ecount(g2))
E(g3)$weight <- runif(ecount(g3))
diversity(gl)

diversity(g2)

diversity(g3)

dominator_tree Dominator tree

Description

Dominator tree of a directed graph.

Usage
dominator_tree(graph, root, mode = c("out”, "in"))
Arguments
graph A directed graph. If it is not a flowgraph, and it contains some vertices not
reachable from the root vertex, then these vertices will be collected and returned
as part of the result.
root The id of the root (or source) vertex, this will be the root of the tree.
mode Constant, must be ‘in’ or ‘out’. If it is ‘in’, then all directions are considered

as opposite to the original one in the input graph.

124

Details

Drawing graphs

A flowgraph is a directed graph with a distinguished start (or root) vertex r, such that for any vertex
v, there is a path from 7 to v. A vertex v dominates another vertex w (not equal to v), if every path
from r to w contains v. Vertex v is the immediate dominator or w, v = idom(w), if v dominates w
and every other dominator of w dominates v. The edges (idom(w), w)|w # r form a directed tree,
rooted at r, called the dominator tree of the graph. Vertex v dominates vertex w if and only if v is
an ancestor of w in the dominator tree.

This function implements the Lengauer-Tarjan algorithm to construct the dominator tree of a di-
rected graph. For details see the reference below.

Value

A list with components:

dom

domtree

leftout

Author(s)

A numeric vector giving the immediate dominators for each vertex. For vertices
that are unreachable from the root, it contains NaN. For the root vertex itself it
contains minus one.

A graph object, the dominator tree. Its vertex ids are the as the vertex ids of the
input graph. Isolate vertices are the ones that are unreachable from the root.

A numeric vector containing the vertex ids that are unreachable from the root.

Gabor Csardi <csardi .gabor@gmail . com>

References

Thomas Lengauer, Robert Endre Tarjan: A fast algorithm for finding dominators in a flowgraph,
ACM Transactions on Programming Languages and Systems (TOPLAS) /1, 121-141, 1979.

Examples

The example from the paper
g <- graph_from_literal(R-+A:B:C, A-+D, B-+A:D:E, C-+F:G, D-+L,

E-+H, F-+I, G-+I:J, H-+E:K, I-+K, J-+I,
K-+I:R, L-+H)

dtree <- dominator_tree(g, root="R")

layout <- layout_as_tree(dtree$domtree, root="R")

layout[,2] <- -layout[,2]

plot(dtree$domtree, layout=layout, vertex.label=V(dtree$domtree)$name)

Drawing graphs

Drawing graphs

Description

The common bits of the three plotting functions plot.igraph, tkplot and rglplot are discussed
in this manual page

Drawing graphs 125

Details

There are currently three different functions in the igraph package which can draw graph in various
ways:

plot.igraph does simple non-interactive 2D plotting to R devices. Actually it is an implementation
of the plot generic function, so you can write plot(graph) instead of plot.igraph(graph). As
it used the standard R devices it supports every output format for which R has an output device.
The list is quite impressing: PostScript, PDF files, XFig files, SVG files, JPG, PNG and of course
you can plot to the screen as well using the default devices, or the good-looking anti-aliased Cairo
device. See plot.igraph for some more information.

tkplot does interactive 2D plotting using the tcltk package. It can only handle graphs of moderate
size, a thousand vertices is probably already too many. Some parameters of the plotted graph can be
changed interactively after issuing the tkplot command: the position, color and size of the vertices
and the color and width of the edges. See tkplot for details.

rglplot is an experimental function to draw graphs in 3D using OpenGL. See rglplot for some
more information.

Please also check the examples below.

How to specify graphical parameters

There are three ways to give values to the parameters described below, in section ’Parameters’. We
give these three ways here in the order of their precedence.

The first method is to supply named arguments to the plotting commands: plot.igraph, tkplot
or rglplot. Parameters for vertices start with prefix ‘vertex.’, parameters for edges have prefix
‘edge.’, and global parameters have no prefix. Eg. the color of the vertices can be given via
argument vertex.color, whereas edge.color sets the color of the edges. layout gives the layout
of the graphs.

The second way is to assign vertex, edge and graph attributes to the graph. These attributes have
no prefix, ie. the color of the vertices is taken from the color vertex attribute and the color of the
edges from the color edge attribute. The layout of the graph is given by the layout graph attribute.
(Always assuming that the corresponding command argument is not present.) Setting vertex and
edge attributes are handy if you want to assign a given ‘look’ to a graph, attributes are saved with
the graph is you save it with save or in GraphML format with write_graph, so the graph will have
the same look after loading it again.

If a parameter is not given in the command line, and the corresponding vertex/edge/graph attribute
is also missing then the general igraph parameters handled by igraph_options are also checked.
Vertex parameters have prefix ‘vertex.’, edge parameters are prefixed with ‘edge.’, general pa-
rameters like layout are prefixed with ‘plot’. These parameters are useful if you want all or most
of your graphs to have the same look, vertex size, vertex color, etc. Then you don’t need to set these
at every plotting, and you also don’t need to assign vertex/edge attributes to every graph.

If the value of a parameter is not specified by any of the three ways described here, its default valued
is used, as given in the source code.

Different parameters can have different type, eg. vertex colors can be given as a character vector
with color names, or as an integer vector with the color numbers from the current palette. Different
types are valid for different parameters, this is discussed in detail in the next section. It is however
always true that the parameter can always be a function object in which it will be called with the
graph as its single argument to get the “proper” value of the parameter. (If the function returns
another function object that will not be called again. ..)

126 Drawing graphs

The list of parameters

Vertex parameters first, note that the ‘vertex.’ prefix needs to be added if they are used as an
argument or when setting via igraph_options. The value of the parameter may be scalar valid for
every vertex or a vector with a separate value for each vertex. (Shorter vectors are recycled.)

size The size of the vertex, a numeric scalar or vector, in the latter case each vertex sizes may differ.
This vertex sizes are scaled in order have about the same size of vertices for a given value for
all three plotting commands. It does not need to be an integer number.

The default value is 15. This is big enough to place short labels on vertices.

size2 The “other” size of the vertex, for some vertex shapes. For the various rectangle shapes this
gives the height of the vertices, whereas size gives the width. It is ignored by shapes for
which the size can be specified with a single number.

The default is 15.

color The fill color of the vertex. If it is numeric then the current palette is used, see palette. If it
is a character vector then it may either contain integer values, named colors or RGB specified
colors with three or four bytes. All strings starting with ‘#” are assumed to be RGB color
specifications. It is possible to mix named color and RGB colors. Note that tkplot ignores
the fourth byte (alpha channel) in the RGB color specification.
For plot.igraph and integer values, the default igraph palette is used (see the ‘palette’ pa-
rameter below. Note that this is different from the R palette.

If you don’t want (some) vertices to have any color, supply NA as the color name.
The default value is “SkyBlue2”.

frame.color The color of the frame of the vertices, the same formats are allowed as for the fill
color.

If you don’t want vertices to have a frame, supply NA as the color name.
By default it is “black”.

shape The shape of the vertex, currently “circle”, “square”, “csquare”, “rectangle”, “crectangle”,

“vrectangle”, “pie” (see vertex.shape.pie), ‘sphere’, and “none” are supported, and only

by the plot.igraph command. “none” does not draw the vertices at all, although vertex label

are plotted (if given). See shapes for details about vertex shapes and vertex. shape.pie for
using pie charts as vertices.

The “sphere” vertex shape plots vertices as 3D ray-traced spheres, in the given color and

size. This produces a raster image and it is only supported with some graphics devices. On
some devices raster transparency is not supported and the spheres do not have a transparent
background. See dev.capabilities and the ‘rasterImage’ capability to check that your
device is supported.

By default vertices are drawn as circles.

label The vertex labels. They will be converted to character. Specify NA to omit vertex labels.
The default vertex labels are the vertex ids.

label.family The font family to be used for vertex labels. As different plotting commands can used
different fonts, they interpret this parameter different ways. The basic notation is, however,
understood by both plot.igraph and tkplot. rglplot does not support fonts at all right
now, it ignores this parameter completely.
For plot.igraph this parameter is simply passed to text as argument family.
For tkplot some conversion is performed. If this parameter is the name of an exixting Tk font,
then that font is used and the 1label. font and label.cex parameters are ignored complerely.
If it is one of the base families (serif, sans, mono) then Times, Helvetica or Courier fonts
are used, there are guaranteed to exist on all systems. For the ‘symbol’ base family we used
the symbol font is available, otherwise the first font which has ‘symbol’ in its name. If the

Drawing graphs 127

parameter is not a name of the base families and it is also not a named Tk font then we pass it to
tkfont.create and hope the user knows what she is doing. The label. font and label.cex
parameters are also passed to tkfont.create in this case.

The default value is ‘serif’.
label.font The font within the font family to use for the vertex labels. It is interpreted the same

way as the the font graphical parameter: 1 is plain text, 2 is bold face, 3 is italic, 4 is bold
and italic and 5 specifies the symbol font.

For plot.igraph this parameter is simply passed to text.
For tkplot, if the label. family parameter is not the name of a Tk font then this parameter
is used to set whether the newly created font should be italic and/or boldface. Otherwise it is
ignored.
For rglplot it is ignored.
The default value is 1.

label.cex The font size for vertex labels. It is interpreted as a multiplication factor of some device-
dependent base font size.
For plot.igraph it is simply passed to text as argument cex.

For tkplot it is multiplied by 12 and then used as the size argument for tkfont.create.
The base font is thus 12 for tkplot.

For rglplot it is ignored.
The default value is 1.
label.dist The distance of the label from the center of the vertex. If it is O then the label is centered
on the vertex. If it is 1 then the label is displayed beside the vertex.
The default value is 0.
label.degree It defines the position of the vertex labels, relative to the center of the vertices. It is

interpreted as an angle in radian, zero means ‘to the right’, and ‘pi’ means to the left, up is
-pi/2 and down is pi/2.

The default value is -pi/4.

label.color The color of the labels, see the color vertex parameter discussed earlier for the possible
values.
The default value is black.

Edge parameters require to add the ‘edge .’ prefix when used as arguments or set by igraph_options.
The edge parameters:

color The color of the edges, see the color vertex parameter for the possible values.
By default this parameter is darkgrey.

width The width of the edges.
The default value is 1.

arrow.size The size of the arrows. Currently this is a constant, so it is the same for every edge. If a
vector is submitted then only the first element is used, ie. if this is taken from an edge attribute
then only the attribute of the first edge is used for all arrows. This will likely change in the
future.
The default value is 1.

arrow.width The width of the arrows. Currently this is a constant, so it is the same for every edge.
If a vector is submitted then only the first element is used, ie. if this is taken from an edge
attribute then only the attribute of the first edge is used for all arrows. This will likely change
in the future.
This argument is currently only used by plot.igraph.
The default value is 1, which gives the same width as before this option appeared in igraph.

128

Drawing graphs

Ity The line type for the edges. Almost the same format is accepted as for the standard graphics
par, 0 and “blank” mean no edges, 1 and “solid” are for solid lines, the other possible values
are: 2 (“dashed”), 3 (“dotted”), 4 (“‘dotdash™), 5 (“longdash”), 6 (“twodash’).
tkplot also accepts standard Tk line type strings, it does not however support “blank” lines,
instead of type ‘0’ type ‘1’, ie. solid lines will be drawn.

This argument is ignored for rglplot.
The default value is type 1, a solid line.

label The edge labels. They will be converted to character. Specify NA to omit edge labels.
Edge labels are omitted by default.

label.family Font family of the edge labels. See the vertex parameter with the same name for the
details.

label.font The font for the edge labels. See the corresponding vertex parameter discussed earlier
for details.

label.cex The font size for the edge labels, see the corresponding vertex parameter for details.
label.color The color of the edge labels, see the color vertex parameters on how to specify colors.

label.x The horizontal coordinates of the edge labels might be given here, explicitly. The NA
elements will be replaced by automatically calculated coordinates. If NULL, then all edge
horizontal coordinates are calculated automatically. This parameter is only supported by
plot.igraph.

label.y The same as label.x, but for vertical coordinates.

curved Specifies whether to draw curved edges, or not. This can be a logical or a numeric vector
or scalar.
First the vector is replicated to have the same length as the number of edges in the graph.
Then it is interpreted for each edge separately. A numeric value specifies the curvature of the
edge; zero curvature means straight edges, negative values means the edge bends clockwise,
positive values the opposite. TRUE means curvature 0.5, FALSE means curvature zero.
By default the vector specifying the curvatire is calculated via a call to the curve_multiple
function. This function makes sure that multiple edges are curved and are all visible. This
parameter is ignored for loop edges.
The default value is FALSE.
This parameter is currently ignored by rglplot.

arrow.mode This parameter can be used to specify for which edges should arrows be drawn. If this
parameter is given by the user (in either of the three ways) then it specifies which edges will
have forward, backward arrows, or both, or no arrows at all. As usual, this parameter can be a
vector or a scalar value. It can be an integer or character type. If it is integer then 0 means no
arrows, 1 means backward arrows, 2 is for forward arrows and 3 for both. If it is a character
vector then “<” and “<-” specify backward, “>” and “->” forward arrows and “<>" and “<->”
stands for both arrows. All other values mean no arrows, perhaps you should use “-” or “=" to
specify no arrows.
Hint: this parameter can be used as a ‘cheap’ solution for drawing “mixed” graphs: graphs in
which some edges are directed some are not. If you want do this, then please create a directed
graph, because as of version 0.4 the vertex pairs in the edge lists can be swapped in undirected
graphs.
By default, no arrows will be drawn for undirected graphs, and for directed graphs, an arrow
will be drawn for each edge, according to its direction. This is not very surprising, it is the
expected behavior.

loop.angle Gives the angle in radian for plotting loop edges. See the label.dist vertex parameter
to see how this is interpreted.

The default value is O.

Drawing graphs 129

loop.angle2 Gives the second angle in radian for plotting loop edges. This is only used in 3D,
loop.angle is enough in 2D.

The default value is 0.
Other parameters:

layout Either a function or a numeric matrix. It specifies how the vertices will be placed on the
plot.

If it is a numeric matrix, then the matrix has to have one line for each vertex, specifying its
coordinates. The matrix should have at least two columns, for the x and y coordinates, and it
can also have third column, this will be the z coordinate for 3D plots and it is ignored for 2D
plots.

If a two column matrix is given for the 3D plotting function rglplot then the third column is
assumed to be 1 for each vertex.

If layout is a function, this function will be called with the graph as the single parameter
to determine the actual coordinates. The function should return a matrix with two or three
columns. For the 2D plots the third column is ignored.

The default value is layout_nicely, a smart function that chooses a layouter based on the
graph.

margin The amount of empty space below, over, at the left and right of the plot, it is a numeric
vector of length four. Usually values between 0 and 0.5 are meaningful, but negative values
are also possible, that will make the plot zoom in to a part of the graph. If it is shorter than
four then it is recycled.

rglplot does not support this parameter, as it can zoom in and out the graph in a more flexible
way.
Its default value is 0.

palette The color palette to use for vertex color. The default is categorical_pal, which is a

color-blind friendly categorical palette. See its manual page for details and other palettes.
This parameters is only supported by plot, and not by tkplot and rglplot.

rescale Logical constant, whether to rescale the coordinates to the [-1,1]x[-1,1](x[-1,1]) interval.
This parameter is not implemented for tkplot.

Defaults to TRUE, the layout will be rescaled.

asp A numeric constant, it gives the asp parameter for plot, the aspect ratio. Supply O here if you
don’t want to give an aspect ratio. It is ignored by tkplot and rglplot.

Defaults to 1.

frame Boolean, whether to plot a frame around the graph. It is ignored by tkplot and rglplot.
Defaults to FALSE.

main Overall title for the main plot. The default is empty if the annotate.plot igraph option
is FALSE, and the graph’s name attribute otherwise. See the same argument of the base plot
function. Only supported by plot.

sub Subtitle of the main plot, the default is empty. Only supported by plot.

xlab Title for the x axis, the default is empty if the annotate.plot igraph option is FALSE, and the
number of vertices and edges, if it is TRUE. Only supported by plot.

ylab Title for the y axis, the default is empty. Only supported by plot.

Author(s)

Gabor Csardi <csardi.gabor@gmail . com>

130 dyad_census

See Also

plot.igraph, tkplot, rglplot, igraph_options

Examples

Not run:

plotting a simple ring graph, all default parameters, except the layout
g <- make_ring(10)

g$layout <- layout_in_circle

plot(g)

tkplot(g)

rglplot(g)

plotting a random graph, set the parameters in the command arguments
g <- barabasi.game(100)
plot(g, layout=layout_with_fr, vertex.size=4,

vertex.label.dist=0.5, vertex.color="red"”, edge.arrow.size=0.5)

plot a random graph, different color for each component

g <- sample_gnp(100, 1/100)

comps <- components(g)$membership

colbar <- rainbow(max(comps)+1)

V(g)$color <- colbar[comps+1]

plot(g, layout=layout_with_fr, vertex.size=5, vertex.label=NA)

plot communities in a graph

g <- make_full_graph(5) %du% make_full_graph(5) %du% make_full_graph(5)
g <- add_edges(g, c(1,6, 1,11, 6,11))

com <- cluster_spinglass(g, spins=5)

V(g)$color <- com$membership+1

g <- set_graph_attr(g, "layout”, layout_with_kk(g))

plot(g, vertex.label.dist=1.5)

draw a bunch of trees, fix layout
igraph_options(plot.layout=layout_as_tree)
plot(make_tree(20, 2))

plot(make_tree(50, 3), vertex.size=3, vertex.label=NA)
tkplot(make_tree(50, 2, mode="undirected"”), vertex.size=10,
vertex.color="green")

End(Not run)

dyad_census Dyad census of a graph

Description
Classify dyads in a directed graphs. The relationship between each pair of vertices is measured. It
can be in three states: mutual, asymmetric or non-existent.

Usage

dyad_census(graph)

E 131

Arguments

graph The input graph. A warning is given if it is not directed.

Value

A named numeric vector with three elements:

mut The number of pairs with mutual connections.

asym The number of pairs with non-mutual connections.

null The number of pairs with no connection between them.
Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

References

Holland, P.W. and Leinhardt, S. A Method for Detecting Structure in Sociometric Data. American
Journal of Sociology, 76, 492-513. 1970.

Wasserman, S., and Faust, K. Social Network Analysis: Methods and Applications. Cambridge:
Cambridge University Press. 1994.

See Also

triad_census for the same classification, but with triples.

Examples

g <- sample_pa(100)
dyad_census(g)

E Edges of a graph

Description

An edge sequence is a vector containing numeric edge ids, with a special class attribute that allows
custom operations: selecting subsets of edges based on attributes, or graph structure, creating the
intersection, union of edges, etc.

Usage

E(graph, P = NULL, path = NULL, directed = TRUE)

Arguments
graph The graph.
P A list of vertices to select edges via pairs of vertices. The first and second
vertices select the first edge, the third and fourth the second, etc.
path A list of vertices, to select edges along a path. Note that this only works reliable

for simple graphs. If the graph has multiple edges, one of them will be chosen
arbitrarily to be included in the edge sequence.

directed Whether to consider edge directions in the P argument, for directed graphs.

132 each_edge

Details

Edge sequences are usually used as igraph function arguments that refer to edges of a graph.

An edge sequence is tied to the graph it refers to: it really denoted the specific edges of that graph,
and cannot be used together with another graph.

An edge sequence is most often created by the E () function. The result includes edges in increasing
edge id order by default (if. none of the P and path arguments are used). An edge sequence can
be indexed by a numeric vector, just like a regular R vector. See links to other edge sequence
operations below.

Value

An edge sequence of the graph.

Indexing edge sequences

Edge sequences mostly behave like regular vectors, but there are some additional indexing oper-
ations that are specific for them; e.g. selecting edges based on graph structure, or based on edge
attributes. See [.igraph.es for details.

Querying or setting attributes

Edge sequences can be used to query or set attributes for the edges in the sequence. See $.igraph.es
for details.

See Also

Other vertex and edge sequences: V(), igraph-es-attributes, igraph-es-indexing2, igraph-es-indexing,
igraph-vs-attributes, igraph-vs-indexing2, igraph-vs-indexing, print.igraph.es(), print.igraph.vs()

Examples

Edges of an unnamed graph
g <- make_ring(10)
E(g

Edges of a named graph
g2 <- make_ring(10) %>%

set_vertex_attr(”"name”, value = letters[1:10])
E(g2)

each_edge Rewires the endpoints of the edges of a graph to a random vertex

Description
This function can be used together with rewire. This method rewires the endpoints of the edges
with a constant probability uniformly randomly to a new vertex in a graph.

Usage

each_edge(prob, loops = FALSE, multiple = FALSE)

eccentricity 133

Arguments
prob The rewiring probability, a real number between zero and one.
loops Logical scalar, whether loop edges are allowed in the rewired graph.
multiple Logical scalar, whether multiple edges are allowed int the generated graph.
Details

Note that this method might create graphs with multiple and/or loop edges.

Author(s)

Gabor Csardi <csardi .gabor@gmail . com>

See Also

Other rewiring functions: keeping_degseq(), rewire()

Examples

Some random shortcuts shorten the distances on a lattice
g <- make_lattice(length = 100, dim = 1, nei = 5)
mean_distance(g)

g <- rewire(g, each_edge(prob = 0.05))

mean_distance(g)

eccentricity Eccentricity of the vertices in a graph

Description

The eccentricity of a vertex is its shortest path distance from the farthest other node in the graph.

Usage

eccentricity(graph, vids = V(graph), mode = c("all”, "out"”, "in", "total"))

Arguments
graph The input graph, it can be directed or undirected.
vids The vertices for which the eccentricity is calculated.
mode Character constant, gives whether the shortest paths to or from the given vertices
should be calculated for directed graphs. If out then the shortest paths from the
vertex, if in then to it will be considered. If all, the default, then the corre-
sponding undirected graph will be used, edge directions will be ignored. This
argument is ignored for undirected graphs.
Details

The eccentricity of a vertex is calculated by measuring the shortest distance from (or to) the vertex,
to (or from) all vertices in the graph, and taking the maximum.

This implementation ignores vertex pairs that are in different components. Isolate vertices have
eccentricity zero.

134 edge

Value

eccentricity returns a numeric vector, containing the eccentricity score of each given vertex.

References

Harary, F. Graph Theory. Reading, MA: Addison-Wesley, p. 35, 1994.

See Also

radius for a related concept, distances for general shortest path calculations.

Examples
g <- make_star(10, mode="undirected")
eccentricity(g)
edge Helper function for adding and deleting edges
Description

This is a helper function that simplifies adding and deleting edges to/from graphs.

Usage

edge(...)

edges(...)

Arguments

See details below.

Details

edges is an alias for edge.

When adding edges via +, all unnamed arguments of edge (or edges) are concatenated, and then
passed to add_edges. They are interpreted as pairs of vertex ids, and an edge will added between
each pair. Named arguments will be used as edge attributes for the new edges.

When deleting edges via -, all arguments of edge (or edges) are concatenated via c() and passed
to delete_edges.

Value

A special object that can be used with together with igraph graphs and the plus and minus operators.

See Also

Other functions for manipulating graph structure: +.igraph(), add_edges(), add_vertices(),
delete_edges(), delete_vertices(), igraph-minus, path(), vertex()

edge_attr 135

Examples

g <- make_ring(10) %>%
set_edge_attr("color”, value = "red")

g <- g + edge(1, 5, color = "green") +
edge(2, 6, color = "blue") -
edge("8]9")

E(g)L[]]
g %>%
add_layout_(in_circle()) %>%

plot()

g <- make_ring(10) + edges(1:10)
plot(g)

edge_attr Query edge attributes of a graph

Description

Query edge attributes of a graph

Usage

edge_attr(graph, name, index = E(graph))

Arguments
graph The graph
name The name of the attribute to query. If missing, then all edge attributes are re-
turned in a list.
index An optional edge sequence, to query edge attributes for a subset of edges.
Value

The value of the edge attribute, or the list of all edge attributes if name is missing.

See Also

Other graph attributes: delete_edge_attr(), delete_graph_attr(), delete_vertex_attr(),
edge_attr<-(), edge_attr_names(), graph_attr<-(), graph_attr_names(), graph_attr(),
igraph-dollar, igraph-vs-attributes, set_edge_attr(), set_graph_attr(), set_vertex_attr(),
vertex_attr<-(), vertex_attr_names(), vertex_attr()

Examples

g <- make_ring(10) %>%
set_edge_attr("weight”, value = 1:10) %>%
set_edge_attr("color”, value = "red")

g

plot(g, edge.width = E(g)$weight)

136 edge_attr<-

edge_attr_names List names of edge attributes

Description

List names of edge attributes

Usage

edge_attr_names(graph)

Arguments

graph The graph.

Value

Character vector, the names of the edge attributes.

See Also

Other graph attributes: delete_edge_attr(), delete_graph_attr(), delete_vertex_attr(),
edge_attr<-(), edge_attr(), graph_attr<-(), graph_attr_names(), graph_attr(), igraph-dollar,
igraph-vs-attributes, set_edge_attr(), set_graph_attr(), set_vertex_attr(), vertex_attr<-(),
vertex_attr_names(), vertex_attr()

Examples

g <- make_ring(10) %>%

set_edge_attr("label”, value = letters[1:10])
edge_attr_names(g)
plot(g)

edge_attr<- Set one or more edge attributes

Description

Set one or more edge attributes

Usage

edge_attr(graph, name, index = E(graph)) <- value

Arguments
graph The graph.
name The name of the edge attribute to set. If missing, then value must be a named
list, and its entries are set as edge attributes.
index An optional edge sequence to set the attributes of a subset of edges.

value The new value of the attribute(s) for all (or index) edges.

edge_connectivity 137

Value

The graph, with the edge attribute(s) added or set.

See Also

Other graph attributes: delete_edge_attr(), delete_graph_attr(), delete_vertex_attr(),
edge_attr_names(), edge_attr(), graph_attr<-(), graph_attr_names(), graph_attr(), igraph-dollar,
igraph-vs-attributes, set_edge_attr(), set_graph_attr(), set_vertex_attr(), vertex_attr<-(),
vertex_attr_names(), vertex_attr()

Examples

g <- make_ring(10)
edge_attr(g) <- list(name = LETTERS[1:10],
color = rep("green”, gsize(g)))
edge_attr(g, "label”) <- E(g)$name
g
plot(g)

edge_connectivity Edge connectivity.

Description

The edge connectivity of a graph or two vertices, this is recently also called group adhesion.

Usage

edge_connectivity(graph, source = NULL, target = NULL, checks = TRUE)

Arguments
graph The input graph.
source The id of the source vertex, for edge_connectivity it can be NULL, see details
below.
target The id of the target vertex, for edge_connectivity it can be NULL, see details
below.
checks Logical constant. Whether to check that the graph is connected and also the

degree of the vertices. If the graph is not (strongly) connected then the con-
nectivity is obviously zero. Otherwise if the minimum degree is one then the
edge connectivity is also one. It is a good idea to perform these checks, as they
can be done quickly compared to the connectivity calculation itself. They were
suggested by Peter McMahan, thanks Peter.

138 edge_connectivity

Details

The edge connectivity of a pair of vertices (source and target) is the minimum number of edges
needed to remove to eliminate all (directed) paths from source to target. edge_connectivity
calculates this quantity if both the source and target arguments are given (and not NULL).

The edge connectivity of a graph is the minimum of the edge connectivity of every (ordered) pair
of vertices in the graph. edge_connectivity calculates this quantity if neither the source nor the
target arguments are given (ie. they are both NULL).

A set of edge disjoint paths between two vertices is a set of paths between them containing no
common edges. The maximum number of edge disjoint paths between two vertices is the same as
their edge connectivity.

The adhesion of a graph is the minimum number of edges needed to remove to obtain a graph which
is not strongly connected. This is the same as the edge connectivity of the graph.

The three functions documented on this page calculate similar properties, more precisely the most
general is edge_connectivity, the others are included only for having more descriptive function
names.

Value

A scalar real value.

Author(s)

Gabor Csardi <csardi.gabor@gmail . com>

References

Douglas R. White and Frank Harary: The cohesiveness of blocks in social networks: node connec-
tivity and conditional density, TODO: citation

See Also

max_flow, vertex_connectivity, vertex_disjoint_paths, cohesion

Examples

g <- barabasi.game(100, m=1)
g2 <- barabasi.game(100, m=5)
edge_connectivity(g, 100, 1)
edge_connectivity(g2, 100, 1)
edge_disjoint_paths(g2, 100, 1)

g <- sample_gnp(50, 5/50)

g <- as.directed(g)

g <- induced_subgraph(g, subcomponent(g, 1))
adhesion(g)

edge_density 139

edge_density Graph density

Description

The density of a graph is the ratio of the number of edges and the number of possible edges.

Usage
edge_density(graph, loops = FALSE)

Arguments
graph The input graph.
loops Logical constant, whether to allow loop edges in the graph. If this is TRUE then
self loops are considered to be possible. If this is FALSE then we assume that the
graph does not contain any loop edges and that loop edges are not meaningful.
Details

Note that this function may return strange results for graph with multiple edges, density is ill-defined
for graphs with multiple edges.
Value

A real constant. This function returns NaN (=0.0/0.0) for an empty graph with zero vertices.

Author(s)

Gabor Csardi <csardi.gabor@gmail . com>

References

Wasserman, S., and Faust, K. (1994). Social Network Analysis: Methods and Applications. Cam-
bridge: Cambridge University Press.

See Also

vcount, ecount, simplify to get rid of the multiple and/or loop edges.

Examples

gl <- make_empty_graph(n=10)
g2 <- make_full_graph(n=10)
g3 <- sample_gnp(n=10, 0.4)

loop edges

g <- graph(c(1,2, 2,2, 2,3))

edge_density(g, loops=FALSE) # this is wrong!!!

edge_density(g, loops=TRUE) # this is right!!!
edge_density(simplify(g), loops=FALSE) # this is also right, but different

140

ego_size

ego_size

Neighborhood of graph vertices

Description

These functions find the vertices not farther than a given limit from another fixed vertex, these are
called the neighborhood of the vertex.

Usage

ego_size(
graph,
order = 1,

nodes = V(graph),
mode = c("all”, "out", "in"),

mindist = @

)

ego(
graph,
order = 1,

nodes = V(graph),
mode = c(”all”, "out”, "in"),

mindist = @

)

make_ego_graph(

graph,

order = 1,

nodes = V(graph),

mode = c("all”, "out”, "in"),

mindist = @

Arguments
graph
order
nodes

mode

mindist

The input graph.
Integer giving the order of the neighborhood.
The vertices for which the calculation is performed.

Character constant, it specifies how to use the direction of the edges if a directed
graph is analyzed. For ‘out’ only the outgoing edges are followed, so all vertices
reachable from the source vertex in at most order steps are counted. For “"in"’
all vertices from which the source vertex is reachable in at most order steps are
counted. ‘"all" ignores the direction of the edges. This argument is ignored for
undirected graphs.

The minimum distance to include the vertex in the result.

eigen_centrality 141

Details

The neighborhood of a given order o of a vertex v includes all vertices which are closer to v than
the order. Ie. order O is always v itself, order 1 is v plus its immediate neighbors, order 2 is order 1
plus the immediate neighbors of the vertices in order 1, etc.

ego_size calculates the size of the neighborhoods for the given vertices with the given order.
ego calculates the neighborhoods of the given vertices with the given order parameter.

make_ego_graph is creates (sub)graphs from all neighborhoods of the given vertices with the given
order parameter. This function preserves the vertex, edge and graph attributes.

connect creates a new graph by connecting each vertex to all other vertices in its neighborhood.

Value

ego_size returns with an integer vector.
ego returns with a list of integer vectors.
make_ego_graph returns with a list of graphs.

connect returns with a new graph object.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>, the first version was done by Vincent Matossian

Examples

g <- make_ring(10)

ego_size(g, order = 0, 1:3)
ego_size(g, order = 1, 1:3)
ego_size(g, order = 2, 1:3)
ego(g, order = 0, 1:3)
ego(g, order = 1, 1:3)
ego(g, order = 2, 1:3)

attributes
V(g)$name <-

are preserved
c("a",
make_ego_graph(g, order =

npen o mon owgn mgn wpn msm wsn
b ’ C » d ’ e ’ h » 1 ’ J)

2, 1:3)

nen "on
’ g,

connecting to the neighborhood
g <- make_ring(10)
g <- connect(g, 2)

eigen_centrality

Find Eigenvector Centrality Scores of Network Positions

Description

eigen_centrality takes a graph (graph) and returns the eigenvector centralities of positions v

within it

142 eigen_centrality

Usage

eigen_centrality(
graph,
directed = FALSE,
scale = TRUE,
weights = NULL,
options = arpack_defaults

)
Arguments
graph Graph to be analyzed.
directed Logical scalar, whether to consider direction of the edges in directed graphs. It
is ignored for undirected graphs.
scale Logical scalar, whether to scale the result to have a maximum score of one. If
no scaling is used then the result vector has unit length in the Euclidean norm.
weights A numerical vector or NULL. This argument can be used to give edge weights
for calculating the weighted eigenvector centrality of vertices. If this is NULL
and the graph has a weight edge attribute then that is used. If weights is a
numerical vector then it used, even if the graph has a weights edge attribute. If
this is NA, then no edge weights are used (even if the graph has a weight edge
attribute. Note that if there are negative edge weights and the direction of the
edges is considered, then the eigenvector might be complex. In this case only
the real part is reported. This function interprets weights as connection strength.
Higher weights spread the centrality better.
options A named list, to override some ARPACK options. See arpack for details.
Details

Eigenvector centrality scores correspond to the values of the first eigenvector of the graph adjacency
matrix; these scores may, in turn, be interpreted as arising from a reciprocal process in which the
centrality of each actor is proportional to the sum of the centralities of those actors to whom he or she
is connected. In general, vertices with high eigenvector centralities are those which are connected
to many other vertices which are, in turn, connected to many others (and so on). (The perceptive
may realize that this implies that the largest values will be obtained by individuals in large cliques
(or high-density substructures). This is also intelligible from an algebraic point of view, with the
first eigenvector being closely related to the best rank-1 approximation of the adjacency matrix (a
relationship which is easy to see in the special case of a diagonalizable symmetric real matrix via
the SLS™1 decomposition).)

From igraph version 0.5 this function uses ARPACK for the underlying computation, see arpack
for more about ARPACK in igraph.

Value

A named list with components:

vector A vector containing the centrality scores.

value The eigenvalue corresponding to the calculated eigenvector, i.e. the centrality
scores.

options A named list, information about the underlying ARPACK computation. See

arpack for the details.

embed_adjacency_matrix 143

WARNING

eigen_centrality will not symmetrize your data before extracting eigenvectors; don’t send this
routine asymmetric matrices unless you really mean to do so.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com> and Carter T. Butts (http://www.faculty.uci.edu/
profile.cfm?faculty_id=5057) for the manual page.

References

Bonacich, P. (1987). Power and Centrality: A Family of Measures. American Journal of Sociology,
92, 1170-1182.

Examples

#Generate some test data

g <- make_ring(10, directed=FALSE)
#Compute eigenvector centrality scores
eigen_centrality(g)

embed_adjacency_matrix
Spectral Embedding of Adjacency Matrices

Description

Spectral decomposition of the adjacency matrices of graphs.

Usage
embed_adjacency_matrix(
no,
weights = NULL,
which = c¢("1m", "1la", "sa"),

scaled = TRUE,
cvec = graph.strength(graph, weights = weights)/(vcount(graph) - 1),
options = igraph.arpack.default

)
Arguments
graph The input graph, directed or undirected.
no An integer scalar. This value is the embedding dimension of the spectral embed-
ding. Should be smaller than the number of vertices. The largest no-dimensional
non-zero singular values are used for the spectral embedding.
weights Optional positive weight vector for calculating a weighted embedding. If the

graph has a weight edge attribute, then this is used by default. In a weighted
embedding, the edge weights are used instead of the binary adjacencny matrix.

http://www.faculty.uci.edu/profile.cfm?faculty_id=5057
http://www.faculty.uci.edu/profile.cfm?faculty_id=5057

144 embed_adjacency_matrix

which Which eigenvalues (or singular values, for directed graphs) to use. ‘lm’ means
the ones with the largest magnitude, ‘la’ is the ones (algebraic) largest, and ‘sa’
is the (algebraic) smallest eigenvalues. The defaultis ‘lm’. Note that for directed
graphs ‘la’ and ‘Im’ are the equivalent, because the singular values are used for
the ordering.

scaled Logical scalar, if FALSE, then U and V are returned instead of X and Y.

cvec A numeric vector, its length is the number vertices in the graph. This vector is
added to the diagonal of the adjacency matrix.

options A named list containing the parameters for the SVD computation algorithm in
ARPACK. By default, the list of values is assigned the values given by igraph.arpack.default.

Details

This function computes a no-dimensional Euclidean representation of the graph based on its ad-
jacency matrix, A. This representation is computed via the singular value decomposition of the
adjacency matrix, A = UDV T In the case, where the graph is a random dot product graph gener-
ated using latent position vectors in R™° for each vertex, the embedding will provide an estimate of
these latent vectors.

For undirected graphs the latent positions are calculated as X = U™°D'/2, where U™ equals to
the first no columns of U, and D'/? is a diagonal matrix containing the top no singular values on
the diagonal.

For directed graphs the embedding is defined as the pair X = U"°D'/?2 and Y = V"°D'/2. (For
undirected graphs U = V, so it is enough to keep one of them.)

Value
A list containing with entries:

X Estimated latent positions, an n times no matrix, n is the number of vertices.

Y NULL for undirected graphs, the second half of the latent positions for directed
graphs, an n times no matrix, n is the number of vertices.

D The eigenvalues (for undirected graphs) or the singular values (for directed
graphs) calculated by the algorithm.

options A named list, information about the underlying ARPACK computation. See
arpack for the details.

References

Sussman, D.L., Tang, M., Fishkind, D.E., Priebe, C.E. A Consistent Adjacency Spectral Embedding
for Stochastic Blockmodel Graphs, Journal of the American Statistical Association, Vol. 107(499),
2012

See Also

sample_dot_product

Examples

A small graph

lpvs <- matrix(rnorm(200), 20, 10)

lpvs <- apply(lpvs, 2, function(x) { return (abs(x)/sqrt(sum(x*2))) 3})
RDP <- sample_dot_product(lpvs)

embed <- embed_adjacency_matrix(RDP, 5)

embed_laplacian_matrix 145

embed_laplacian_matrix

Spectral Embedding of the Laplacian of a Graph

Description

Spectral decomposition of Laplacian matrices of graphs.

Usage
embed_laplacian_matrix(
graph,
no,
weights = NULL,
which = c¢("1Im", "1la", "sa"),

degmode = c("out”, "in", "all", "total"),
type = c("default”, "D-A", "DAD"”, "I-DAD", "OAP"),
scaled = TRUE,

options

Arguments

graph

no

weights

which

degmode
type

scaled

igraph.arpack.default

The input graph, directed or undirected.

An integer scalar. This value is the embedding dimension of the spectral embed-
ding. Should be smaller than the number of vertices. The largest no-dimensional
non-zero singular values are used for the spectral embedding.

Optional positive weight vector for calculating a weighted embedding. If the
graph has a weight edge attribute, then this is used by default. For weighted
embedding, edge weights are used instead of the binary adjacency matrix, and
vertex strength (see strength) is used instead of the degrees.

Which eigenvalues (or singular values, for directed graphs) to use. ‘Im’ means
the ones with the largest magnitude, ‘la’ is the ones (algebraic) largest, and ‘sa’
is the (algebraic) smallest eigenvalues. The default is ‘Im’. Note that for directed
graphs ‘la’ and ‘Im’ are the equivalent, because the singular values are used for
the ordering.

TODO

The type of the Laplacian to use. Various definitions exist for the Laplacian of a
graph, and one can choose between them with this argument.

Possible values: D-A means D — A where D is the degree matrix and A is
the adjacency matrix; DAD means D/2 times A times D1/2D1/2, DY/2 is the
inverse of the square root of the degree matrix; I-DAD means I — DY/2 where I
is the identity matrix. OAP is O'/2AP'/2 where O'/2 is the inverse of the square
root of the out-degree matrix and P'/2 is the same for the in-degree matrix.
OAP is not defined for undirected graphs, and is the only defined type for directed
graphs.

The default (i.e. type default) is to use D-A for undirected graphs and OAP for
directed graphs.

Logical scalar, if FALSE, then U and V' are returned instead of X and Y.

146 embed_laplacian_matrix

options A named list containing the parameters for the SVD computation algorithm in
ARPACK. By default, the list of values is assigned the values given by igraph.arpack.default.

Details

This function computes a no-dimensional Euclidean representation of the graph based on its Lapla-
cian matrix, L. This representation is computed via the singular value decomposition of the Lapla-
cian matrix.

They are essentially doing the same as embed_adjacency_matrix, but work on the Laplacian ma-
trix, instead of the adjacency matrix.

Value

A list containing with entries:

X Estimated latent positions, an n times no matrix, n is the number of vertices.

Y NULL for undirected graphs, the second half of the latent positions for directed
graphs, an n times no matrix, n is the number of vertices.

D The eigenvalues (for undirected graphs) or the singular values (for directed
graphs) calculated by the algorithm.

options A named list, information about the underlying ARPACK computation. See
arpack for the details.

Author(s)

Gabor Csardi <csardi . gabor@gmail . com>

References

Sussman, D.L., Tang, M., Fishkind, D.E., Priebe, C.E. A Consistent Adjacency Spectral Embedding
for Stochastic Blockmodel Graphs, Journal of the American Statistical Association, Vol. 107(499),
2012

See Also

embed_adjacency_matrix, sample_dot_product

Examples

A small graph

lpvs <- matrix(rnorm(200), 20, 10)

lpvs <- apply(lpvs, 2, function(x) { return (abs(x)/sqrt(sum(x*2))) 3})
RDP <- sample_dot_product(lpvs)

embed <- embed_laplacian_matrix(RDP, 5)

ends 147

ends Incident vertices of some graph edges

Description

Incident vertices of some graph edges

Usage
ends(graph, es, names = TRUE)

Arguments
graph The input graph
es The sequence of edges to query
names Whether to return vertex names or numeric vertex ids. By default vertex names
are used.
Value

A two column matrix of vertex names or vertex ids.

See Also

Other structural queries: [.igraph(), [[.igraph(), adjacent_vertices(), are_adjacent(),
get.edge.ids(), gorder(), gsize(), head_of (), incident_edges(), incident(), is_directed(),
neighbors(), tail_of ()

Examples

g <- make_ring(5)
ends(g, E(g))

erdos.renyi.game Generate random graphs according to the Erdos-Renyi model

Description

This model is very simple, every possible edge is created with the same constant probability.

Usage
erdos.renyi.game(
n,
p.or.m,

type = c("gnp”, "gnm"),
directed = FALSE,
loops = FALSE

148

Arguments

n

p.or.m

type

directed

loops

Details

erdos.renyi.game

The number of vertices in the graph.

Either the probability for drawing an edge between two arbitrary vertices (G(n,p)
graph), or the number of edges in the graph (for G(n,m) graphs).

The type of the random graph to create, either gnp (G(n,p) graph) or gnm (G(n,m)
graph).

Logical, whether the graph will be directed, defaults to FALSE.
Logical, whether to add loop edges, defaults to FALSE.

In G(n,p) graphs, the graph has ‘n’ vertices and for each edge the probability that it is present in the

graphis ‘p’.

In G(n,m) graphs, the graph has ‘n’ vertices and ‘m’ edges, and the ‘m’ edges are chosen uniformly
randomly from the set of all possible edges. This set includes loop edges as well if the loops
parameter is TRUE.

random. graph.game is an alias to this function.

Value

A graph object.

Deprecated

Since igraph version 0.8.0, both erdos.renyi.game and random.graph. game are deprecated, and
sample_gnp and sample_gnm should be used instead.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

References

Erdos, P. and Renyi, A., On random graphs, Publicationes Mathematicae 6, 290-297 (1959).

See Also

sample_pa

Examples

g <- erdos.renyi.game(1000, 1/1000)
degree_distribution(g)

estimate_betweenness 149

estimate_betweenness Vertex and edge betweenness centrality

Description

The vertex and edge betweenness are (roughly) defined by the number of geodesics (shortest paths)
going through a vertex or an edge.

Usage

estimate_betweenness(
graph,
vids = V(graph),
directed = TRUE,
cutoff,
weights = NULL,
nobigint = TRUE

)

betweenness(
graph,
v = V(graph),
directed = TRUE,
weights = NULL,
nobigint = TRUE,
normalized = FALSE
)

edge_betweenness(graph, e = E(graph), directed = TRUE, weights = NULL)

Arguments

graph The graph to analyze.

vids The vertices for which the vertex betweenness estimation will be calculated.

directed Logical, whether directed paths should be considered while determining the
shortest paths.

cutoff The maximum path length to consider when calculating the betweenness. If zero
or negative then there is no such limit.

weights Optional positive weight vector for calculating weighted betweenness. If the
graph has a weight edge attribute, then this is used by default. Weights are used
to calculate weighted shortest paths, so they are interpreted as distances.

nobigint Logical scalar, whether to use big integers during the calculation. This is only
required for lattice-like graphs that have very many shortest paths between a pair
of vertices. If TRUE (the default), then big integers are not used.

v The vertices for which the vertex betweenness will be calculated.

normalized Logical scalar, whether to normalize the betweenness scores. If TRUE, then the

results are normalized by the number of ordered or unordered vertex pairs in
directed and undirected graphs, respectively. In an undirected graph,
2B

B = D=2y

150 estimate_betweenness

where B™ is the normalized, B the raw betweenness, and n is the number of
vertices in the graph.

e The edges for which the edge betweenness will be calculated.

Details
The vertex betweenness of vertex v is defined by
Z Givj/ 9ij
i i, jF#v
The edge betweenness of edge e is defined by
> giej/gij.
i#j

betweenness calculates vertex betweenness, edge_betweenness calculates edge betweenness.

estimate_betweenness only considers paths of length cutoff or smaller, this can be run for larger
graphs, as the running time is not quadratic (if cutoff is small). If cutoff is zero or negative then
the function calculates the exact betweenness scores.

estimate_edge_betweenness is similar, but for edges.

For calculating the betweenness a similar algorithm to the one proposed by Brandes (see Refer-
ences) is used.
Value

A numeric vector with the betweenness score for each vertex in v for betweenness.
A numeric vector with the edge betweenness score for each edge in e for edge_betweenness.

estimate_betweenness returns the estimated betweenness scores for vertices in vids, estimate_edge_betweenness
the estimated edge betweenness score for all edges; both in a numeric vector.
Note

edge_betweenness might give false values for graphs with multiple edges.

Author(s)

Gabor Csardi <csardi .gabor@gmail . com>

References

Freeman, L.C. (1979). Centrality in Social Networks I: Conceptual Clarification. Social Networks,
1, 215-239.

Ulrik Brandes, A Faster Algorithm for Betweenness Centrality. Journal of Mathematical Sociology
25(2):163-177, 2001.

See Also

closeness, degree

fit_hrg 151

Examples

g <- sample_gnp(10, 3/10)
betweenness(g)
edge_betweenness(g)

fit_hrg Fit a hierarchical random graph model

Description

fit_hrg fits a HRG to a given graph. It takes the specified steps number of MCMC steps to
perform the fitting, or a convergence criteria if the specified number of steps is zero. fit_hrg can
start from a given HRG, if this is given in the hrg argument and the start argument is TRUE.

Usage

fit_hrg(graph, hrg = NULL, start = FALSE, steps = 0)

Arguments
graph The graph to fit the model to. Edge directions are ignored in directed graphs.
hrg A hierarchical random graph model, in the form of an igraphHRG object. fit_hrg
allows this to be NULL, in which case a random starting point is used for the fit-
ting.
start Logical, whether to start the fitting/sampling from the supplied igraphHRG ob-
ject, or from a random starting point.
steps The number of MCMC steps to make. If this is zero, then the MCMC procedure
is performed until convergence.
Value

fit_hrg returns an igraphHRG object. This is a list with the following members:

left Vector that contains the left children of the internal tree vertices. The first vertex
is always the root vertex, so the first element of the vector is the left child of
the root vertex. Internal vertices are denoted with negative numbers, starting
from -1 and going down, i.e. the root vertex is -1. Leaf vertices are denoted by
non-negative number, starting from zero and up.

right Vector that contains the right children of the vertices, with the same encoding as
the left vector.

prob The connection probabilities attached to the internal vertices, the first number
belongs to the root vertex (i.e. internal vertex -1), the second to internal vertex
-2, etc.

edges The number of edges in the subtree below the given internal vertex.

vertices The number of vertices in the subtree below the given internal vertex, including

itself.

152 fit_power_law

References

A. Clauset, C. Moore, and M.E.J. Newman. Hierarchical structure and the prediction of missing
links in networks. Nature 453, 98—-101 (2008);

A. Clauset, C. Moore, and M.E.J. Newman. Structural Inference of Hierarchies in Networks. In E.
M. Airoldi et al. (Eds.): ICML 2006 Ws, Lecture Notes in Computer Science 4503, 1-13. Springer-
Verlag, Berlin Heidelberg (2007).

See Also

Other hierarchical random graph functions: consensus_tree(), hrg-methods, hrg_tree(), hrg(),
predict_edges(), print.igraphHRGConsensus(), print.igraphHRG(), sample_hrg()

Examples

We are not running these examples any more, because they

take a long time (~15 seconds) to run and this is against the CRAN
repository policy. Copy and paste them by hand to your R prompt if
you want to run them.

Not run:

A graph with two dense groups

g <- sample_gnp(10, p=1/2) + sample_gnp(10@, p=1/2)
hrg <- fit_hrg(g)

hrg

The consensus tree for it
consensus_tree(g, hrg=hrg, start=TRUE)

Prediction of missing edges
g2 <- make_full_graph(4) + (make_full_graph(4) - path(1,2))
predict_edges(g2)

End(Not run)

fit_power_law Fitting a power-law distribution function to discrete data

Description

fit_power_law fits a power-law distribution to a data set.

Usage
fit_power_law(
X’
xmin = NULL,
start = 2,

force.continuous = FALSE,
implementation = c("plfit”, "R.mle"),

fit_power_law 153

Arguments

X The data to fit, a numeric vector. For implementation ‘R.mle’ the data must
be integer values. For the ‘plfit’ implementation non-integer values might be
present and then a continuous power-law distribution is fitted.

Xxmin Numeric scalar, or NULL. The lower bound for fitting the power-law. If NULL,
the smallest value in x will be used for the ‘R.mle’ implementation, and its
value will be automatically determined for the ‘plfit’ implementation. This
argument makes it possible to fit only the tail of the distribution.

start Numeric scalar. The initial value of the exponent for the minimizing function,

for the ‘R.mle’ implementation. Usually it is safe to leave this untouched.

force.continuous
Logical scalar. Whether to force a continuous distribution for the ‘p1fit’ imple-
mentation, even if the sample vector contains integer values only (by chance).
If this argument is false, igraph will assume a continuous distribution if at least
one sample is non-integer and assume a discrete distribution otherwise.

implementation Character scalar. Which implementation to use. See details below.

Additional arguments, passed to the maximum likelihood optimizing function,
mle, if the ‘R.mle’ implementation is chosen. It is ignored by the ‘plfit’ im-
plementation.

Details

This function fits a power-law distribution to a vector containing samples from a distribution (that
is assumed to follow a power-law of course). In a power-law distribution, it is generally assumed
that P(X = z) is proportional to 2~%/Ph¢ where x is a positive number and « is greater than 1. In
many real-world cases, the power-law behaviour kicks in only above a threshold value x,,;,. The
goal of this function is to determine « if x,,, is given, or to determine ,,;, and the corresponding
value of o

fit_power_law provides two maximum likelihood implementations. If the implementation ar-
gument is ‘R.mle’, then the BFGS optimization (see mle) algorithm is applied. The additional
arguments are passed to the mle function, so it is possible to change the optimization method and/or
its parameters. This implementation can not to fit the x,,;, argument, so use the ‘plfit’ imple-
mentation if you want to do that.

The ‘p1fit’ implementation also uses the maximum likelihood principle to determine « for a given
Tmins When x,,;, is not given in advance, the algorithm will attempt to find itsoptimal value for
which the p-value of a Kolmogorov-Smirnov test between the fitted distribution and the original
sample is the largest. The function uses the method of Clauset, Shalizi and Newman to calculate
the parameters of the fitted distribution. See references below for the details.

Value

Depends on the implementation argument. If it is ‘R.mle’, then an object with class ‘mle’. It can
be used to calculate confidence intervals and log-likelihood. See mle-class for details.

If implementationis ‘plfit’, then the result is a named list with entries:
continuous Logical scalar, whether the fitted power-law distribution was continuous or dis-
crete.

alpha Numeric scalar, the exponent of the fitted power-law distribution.

154

xmin

logLik
KS.stat

KS.p

Author(s)

get.edge.ids

Numeric scalar, the minimum value from which the power-law distribution was
fitted. In other words, only the values larger than xmin were used from the input
vector.

Numeric scalar, the log-likelihood of the fitted parameters.

Numeric scalar, the test statistic of a Kolmogorov-Smirnov test that compares
the fitted distribution with the input vector. Smaller scores denote better fit.

Numeric scalar, the p-value of the Kolmogorov-Smirnov test. Small p-values
(less than 0.05) indicate that the test rejected the hypothesis that the original
data could have been drawn from the fitted power-law distribution.

Tamas Nepusz <ntamas@gmail.com> and Gabor Csardi <csardi.gabor@gmail.com>

References

Power laws, Pareto distributions and Zipf’s law, M. E. J. Newman, Contemporary Physics, 46,

323-351, 2005.

Aaron Clauset, Cosma R .Shalizi and Mark E.J. Newman: Power-law distributions in empirical
data. STAM Review 51(4):661-703, 2009.

See Also

mle

Examples

This should approximately yield the correct exponent 3

g <- barabasi.game(1000) # increase this number to have a better estimate
d <- degree(g, mode="in")

fit1l <- fit_power_law(d+1, 10)

fit2 <- fit_power_law(d+1, 10, implementation="R.mle")

fitl$alpha

stats4::coef (fit2)

fit1$loglik

stats4::loglLik(fit2)

get.edge.ids

Find the edge ids based on the incident vertices of the edges

Description

Find the edges in an igraph graph that have the specified end points. This function handles multi-
graph (graphs with multiple edges) and can consider or ignore the edge directions in directed graphs.

Usage

get.edge.ids(graph, vp, directed = TRUE, error = FALSE, multi = FALSE)

get.edge.ids 155

Arguments
graph The input graph.
vp The incident vertices, given as vertex ids or symbolic vertex names. They are
interpreted pairwise, i.e. the first and second are used for the first edge, the third
and fourth for the second, etc.
directed Logical scalar, whether to consider edge directions in directed graphs. This
argument is ignored for undirected graphs.
error Logical scalar, whether to report an error if an edge is not found in the graph.
If FALSE, then no error is reported, and zero is returned for the non-existant
edge(s).
multi Logical scalar, whether to handle multiple edges properly. If FALSE, and a pair of
vertices are given twice (or more), then always the same edge id is reported back
for them. If TRUE, then the edge ids of multiple edges are correctly reported.
Details

igraph vertex ids are natural numbers, starting from one, up to the number of vertices in the graph.
Similarly, edges are also numbered from one, up to the number of edges.

This function allows finding the edges of the graph, via their incident vertices.

Value

A numeric vector of edge ids, one for each pair of input vertices. If there is no edge in the input
graph for a given pair of vert