igraph Reference Manual

For using the igraph C library

Search the manual:

Chapter 16. Cliques and independent vertex sets

These functions calculate various graph properties related to cliques and independent vertex sets.

1. Cliques

1.1. igraph_cliques — Finds all or some cliques in a graph.

igraph_error_t igraph_cliques(const igraph_t *graph, igraph_vector_int_list_t *res,
                   igraph_integer_t min_size, igraph_integer_t max_size);

Cliques are fully connected subgraphs of a graph.

If you are only interested in the size of the largest clique in the graph, use igraph_clique_number() instead.

The current implementation of this function uses version 1.21 of the Cliquer library by Sampo Niskanen and Patric R. J. Östergård, http://users.aalto.fi/~pat/cliquer.html

Arguments: 

graph:

The input graph.

res:

Pointer to a list of integer vectors, the result will be stored here. The pointer vector will be resized if needed.

min_size:

Integer specifying the minimum size of the cliques to be returned. If negative or zero, no lower bound will be used.

max_size:

Integer specifying the maximum size of the cliques to be returned. If negative or zero, no upper bound will be used.

Returns: 

Error code.

See also: 

Time complexity: Exponential

Example 16.1.  File examples/simple/igraph_cliques.c

#include <igraph.h>
#include <stdlib.h>

int compare_vectors(const igraph_vector_int_t *v1, const igraph_vector_int_t *v2) {
    igraph_integer_t s1, s2, i;

    s1 = igraph_vector_int_size(v1);
    s2 = igraph_vector_int_size(v2);
    if (s1 < s2) {
        return -1;
    }
    if (s1 > s2) {
        return 1;
    }
    for (i = 0; i < s1; ++i) {
        if (VECTOR(*v1)[i] < VECTOR(*v2)[i]) {
            return -1;
        }
        if (VECTOR(*v1)[i] > VECTOR(*v2)[i]) {
            return 1;
        }
    }
    return 0;
}

/* Takes a pointer vector of vectors. Sorts each vector, then sorts the pointer vector */
void canonicalize_list(igraph_vector_int_list_t *list) {
    igraph_integer_t len = igraph_vector_int_list_size(list);
    for (igraph_integer_t i = 0; i < len; ++i) {
        igraph_vector_int_sort(igraph_vector_int_list_get_ptr(list, i));
    }
    igraph_vector_int_list_sort(list, &compare_vectors);
}

struct userdata {
    igraph_integer_t i;
    igraph_vector_int_list_t *list;
};

igraph_error_t handler(const igraph_vector_int_t *clique, void *arg) {
    struct userdata *ud;
    igraph_bool_t cont;

    ud = (struct userdata *) arg;
    cont = 1; /* true */

    if (compare_vectors(clique, igraph_vector_int_list_get_ptr(ud->list, ud->i)) != 0) {
        printf("igraph_cliques() and igraph_cliques_callback() give different results.\n");
        cont = 0; /* false */
    }

    ud->i += 1;

    return cont ? IGRAPH_SUCCESS : IGRAPH_STOP;
}

void test_callback(const igraph_t *graph) {
    igraph_vector_int_list_t list;
    struct userdata ud;

    igraph_vector_int_list_init(&list, 0);
    igraph_cliques(graph, &list, 0, 0);

    ud.i = 0;
    ud.list = &list;

    igraph_cliques_callback(graph, 0, 0, &handler, (void *) &ud);

    igraph_vector_int_list_destroy(&list);
}


int main(void) {

    igraph_t g;
    igraph_vector_int_list_t result;
    igraph_es_t es;
    igraph_integer_t omega;
    igraph_integer_t i, j, n;
    const int params[] = {4, -1, 2, 2, 0, 0, -1, -1};

    igraph_set_warning_handler(igraph_warning_handler_ignore);

    igraph_vector_int_list_init(&result, 0);
    igraph_full(&g, 6, 0, 0);
    igraph_es_pairs_small(&es, 0, 0, 1, 0, 2, 3, 5, -1);
    igraph_delete_edges(&g, es);
    igraph_es_destroy(&es);

    for (j = 0; j < sizeof(params) / (2 * sizeof(params[0])); j++) {
        if (params[2 * j + 1] != 0) {
            igraph_cliques(&g, &result, params[2 * j], params[2 * j + 1]);
        } else {
            igraph_largest_cliques(&g, &result);
        }
        n = igraph_vector_int_list_size(&result);
        printf("%" IGRAPH_PRId " cliques found\n", n);
        canonicalize_list(&result);
        for (i = 0; i < n; i++) {
            igraph_vector_int_t* v = igraph_vector_int_list_get_ptr(&result, i);
            igraph_vector_int_print(v);
        }
    }

    igraph_clique_number(&g, &omega);
    printf("omega=%" IGRAPH_PRId "\n", omega);

    test_callback(&g);

    igraph_destroy(&g);

    igraph_kary_tree(&g, 5, 2, IGRAPH_TREE_OUT);
    igraph_cliques(&g, &result, 5, 5);
    if (igraph_vector_int_list_size(&result) != 0) {
        return 1;
    }

    igraph_destroy(&g);
    igraph_vector_int_list_destroy(&result);

    return 0;
}


1.2. igraph_clique_size_hist — Counts cliques of each size in the graph.

igraph_error_t igraph_clique_size_hist(const igraph_t *graph, igraph_vector_t *hist,
                            igraph_integer_t min_size, igraph_integer_t max_size);

Cliques are fully connected subgraphs of a graph.

The current implementation of this function uses version 1.21 of the Cliquer library by Sampo Niskanen and Patric R. J. Östergård, http://users.aalto.fi/~pat/cliquer.html

Arguments: 

graph:

The input graph.

hist:

Pointer to an initialized vector. The result will be stored here. The first element will store the number of size-1 cliques, the second element the number of size-2 cliques, etc. For cliques smaller than min_size, zero counts will be returned.

min_size:

Integer specifying the minimum size of the cliques to be returned. If negative or zero, no lower bound will be used.

max_size:

Integer specifying the maximum size of the cliques to be returned. If negative or zero, no upper bound will be used.

Returns: 

Error code.

See also: 

Time complexity: Exponential

1.3. igraph_cliques_callback — Calls a function for each clique in the graph.

igraph_error_t igraph_cliques_callback(const igraph_t *graph,
                            igraph_integer_t min_size, igraph_integer_t max_size,
                            igraph_clique_handler_t *cliquehandler_fn, void *arg);

Cliques are fully connected subgraphs of a graph. This function enumerates all cliques within the given size range and calls cliquehandler_fn for each of them. The cliques are passed to the callback function as a pointer to an igraph_vector_int_t. Destroying and freeing this vector is left up to the user. Use igraph_vector_int_destroy() to destroy it first, then free it using igraph_free().

The current implementation of this function uses version 1.21 of the Cliquer library by Sampo Niskanen and Patric R. J. Östergård, http://users.aalto.fi/~pat/cliquer.html

Arguments: 

graph:

The input graph.

min_size:

Integer specifying the minimum size of the cliques to be returned. If negative or zero, no lower bound will be used.

max_size:

Integer specifying the maximum size of the cliques to be returned. If negative or zero, no upper bound will be used.

cliquehandler_fn:

Callback function to be called for each clique. See also igraph_clique_handler_t.

arg:

Extra argument to supply to cliquehandler_fn.

Returns: 

Error code.

See also: 

Time complexity: Exponential

1.4. igraph_clique_handler_t — Type of clique handler functions.

typedef igraph_error_t igraph_clique_handler_t(const igraph_vector_int_t *clique, void *arg);

Callback type, called when a clique was found. See the details at the documentation of igraph_cliques_callback().

Arguments: 

clique:

The current clique. The clique is owned by the clique search routine. You do not need to destroy or free it if you do not want to store it; however, if you want to hold on to it for a longer period of time, you need to make a copy of it on your own and store the copy itself.

arg:

This extra argument was passed to igraph_cliques_callback() when it was called.

Returns: 

Error code; IGRAPH_SUCCESS to continue the search or IGRAPH_STOP to stop the search without signaling an error.

1.5. igraph_largest_cliques — Finds the largest clique(s) in a graph.

igraph_error_t igraph_largest_cliques(const igraph_t *graph, igraph_vector_int_list_t *res);

A clique is largest (quite intuitively) if there is no other clique in the graph which contains more vertices.

Note that this is not necessarily the same as a maximal clique, i.e. the largest cliques are always maximal but a maximal clique is not always largest.

The current implementation of this function searches for maximal cliques using igraph_maximal_cliques_callback() and drops those that are not the largest.

The implementation of this function changed between igraph 0.5 and 0.6, so the order of the cliques and the order of vertices within the cliques will almost surely be different between these two versions.

Arguments: 

graph:

The input graph.

res:

Pointer to a list of integer vectors, the result will be stored here. The pointer vector will be resized if needed.

Returns: 

Error code.

See also: 

Time complexity: O(3^(|V|/3)) worst case.

1.6. igraph_maximal_cliques — Finds all maximal cliques in a graph.

igraph_error_t igraph_maximal_cliques(
    const igraph_t *graph, igraph_vector_int_list_t *res,
    igraph_integer_t min_size, igraph_integer_t max_size
);

A maximal clique is a clique which can't be extended any more by adding a new vertex to it.

If you are only interested in the size of the largest clique in the graph, use igraph_clique_number() instead.

The current implementation uses a modified Bron-Kerbosch algorithm to find the maximal cliques, see: David Eppstein, Maarten Löffler, Darren Strash: Listing All Maximal Cliques in Sparse Graphs in Near-Optimal Time. Algorithms and Computation, Lecture Notes in Computer Science Volume 6506, 2010, pp 403-414.

The implementation of this function changed between igraph 0.5 and 0.6 and also between 0.6 and 0.7, so the order of the cliques and the order of vertices within the cliques will almost surely be different between these three versions.

Arguments: 

graph:

The input graph.

res:

Pointer to a pointer vector, the result will be stored here, i.e. res will contain pointers to igraph_vector_int_t objects which contain the indices of vertices involved in a clique. The pointer vector will be resized if needed but note that the objects in the pointer vector will not be freed. Note that vertices of a clique may be returned in arbitrary order.

min_size:

Integer giving the minimum size of the cliques to be returned. If negative or zero, no lower bound will be used.

max_size:

Integer giving the maximum size of the cliques to be returned. If negative or zero, no upper bound will be used.

Returns: 

Error code.

See also: 

Time complexity: O(d(n-d)3^(d/3)) worst case, d is the degeneracy of the graph, this is typically small for sparse graphs.

Example 16.2.  File examples/simple/igraph_maximal_cliques.c

#include <igraph.h>

#define NODES 1000
#define CLIQUE_SIZE 10
#define NO_CLIQUES 10
#define INT(a) (igraph_rng_get_integer(igraph_rng_default(), 0, (a)))

void permutation(igraph_vector_int_t *vec) {
    igraph_integer_t i, r, tmp;
    for (i = 0; i < CLIQUE_SIZE; i++) {
        r = INT(NODES - 1);
        tmp = VECTOR(*vec)[i];
        VECTOR(*vec)[i] = VECTOR(*vec)[r];
        VECTOR(*vec)[r] = tmp;
    }
}

int sort_cmp(const igraph_vector_int_t *a, const igraph_vector_int_t *b) {
    igraph_integer_t i, alen = igraph_vector_int_size(a), blen = igraph_vector_int_size(b);
    if (alen != blen) {
        return (alen < blen) - (alen > blen);
    }
    for (i = 0; i < alen; i++) {
        igraph_integer_t ea = VECTOR(*a)[i], eb = VECTOR(*b)[i];
        if (ea != eb) {
            return (ea > eb) - (ea < eb);
        }
    }
    return 0;
}

void sort_cliques(igraph_vector_int_list_t *cliques) {
    igraph_integer_t i, n = igraph_vector_int_list_size(cliques);
    for (i = 0; i < n; i++) {
        igraph_vector_int_t *v = igraph_vector_int_list_get_ptr(cliques, i);
        igraph_vector_int_sort(v);
    }
    igraph_vector_int_list_sort(cliques, sort_cmp);
}

void print_cliques(igraph_vector_int_list_t *cliques) {
    igraph_integer_t i;
    sort_cliques(cliques);
    for (i = 0; i < igraph_vector_int_list_size(cliques); i++) {
        igraph_vector_int_t *v = igraph_vector_int_list_get_ptr(cliques, i);
        igraph_vector_int_print(v);
    }
}

int main(void) {

    igraph_t g, g2, cli;
    igraph_vector_int_t perm;
    igraph_vector_int_list_t cliques;
    igraph_integer_t no;
    igraph_integer_t i;

    igraph_rng_seed(igraph_rng_default(), 42);

    /* Create a graph that has a random component, plus a number of
       relatively small cliques */

    igraph_vector_int_init_range(&perm, 0, NODES);
    igraph_erdos_renyi_game(&g, IGRAPH_ERDOS_RENYI_GNM, NODES, NODES,
                            IGRAPH_UNDIRECTED, IGRAPH_NO_LOOPS);
    igraph_full(&cli, CLIQUE_SIZE, IGRAPH_UNDIRECTED, IGRAPH_NO_LOOPS);

    for (i = 0; i < NO_CLIQUES; i++) {
        /* Permute vertices of g */
        permutation(&perm);
        igraph_permute_vertices(&g, &g2, &perm);
        igraph_destroy(&g);
        g = g2;

        /* Add a clique */
        igraph_union(&g2, &g, &cli, /*edge_map1=*/ NULL, /*edge_map2=*/ NULL);
        igraph_destroy(&g);
        g = g2;
    }
    igraph_simplify(&g, /*multiple=*/ true, /*loop=*/ false, /*edge_comb=*/ NULL);

    igraph_vector_int_destroy(&perm);
    igraph_destroy(&cli);

    /* Find the maximal cliques */

    igraph_vector_int_list_init(&cliques, 0);
    igraph_maximal_cliques(&g, &cliques, /*min_size=*/ 3,
                           /*max_size=*/ 0 /*no limit*/);
    igraph_maximal_cliques_count(&g, &no, /*min_size=*/ 3,
                                 /*max_size=*/ 0 /*no limit*/);

    if (no != igraph_vector_int_list_size(&cliques)) {
        return 1;
    }

    /* Print them */

    print_cliques(&cliques);

    /* Clean up */

    igraph_vector_int_list_destroy(&cliques);
    igraph_destroy(&g);

    /* Build a triangle with a loop (thanks to Emmanuel Navarro) */

    igraph_small(&g, 3, IGRAPH_UNDIRECTED, 0, 1, 1, 2, 2, 0, 0, 0, -1);

    /* Find the maximal cliques */

    igraph_vector_int_list_init(&cliques, 0);
    igraph_maximal_cliques(&g, &cliques, /*min_size=*/ 3,
                           /*max_size=*/ 0 /*no limit*/);
    igraph_maximal_cliques_count(&g, &no, /*min_size=*/ 3,
                                 /*max_size=*/ 0 /*no limit*/);

    if (no != igraph_vector_int_list_size(&cliques)) {
        return 2;
    }

    /* Print them */

    print_cliques(&cliques);

    /* Clean up */

    igraph_vector_int_list_destroy(&cliques);
    igraph_destroy(&g);

    return 0;
}


1.7. igraph_maximal_cliques_count — Count the number of maximal cliques in a graph.

igraph_error_t igraph_maximal_cliques_count(const igraph_t *graph,
                                 igraph_integer_t *res,
                                 igraph_integer_t min_size,
                                 igraph_integer_t max_size);

The current implementation uses a modified Bron-Kerbosch algorithm to find the maximal cliques, see: David Eppstein, Maarten Löffler, Darren Strash: Listing All Maximal Cliques in Sparse Graphs in Near-Optimal Time. Algorithms and Computation, Lecture Notes in Computer Science Volume 6506, 2010, pp 403-414.

Arguments: 

graph:

The input graph.

res:

Pointer to an igraph_integer_t; the number of maximal cliques will be stored here.

min_size:

Integer giving the minimum size of the cliques to be returned. If negative or zero, no lower bound will be used.

max_size:

Integer giving the maximum size of the cliques to be returned. If negative or zero, no upper bound will be used.

Returns: 

Error code.

See also: 

Time complexity: O(d(n-d)3^(d/3)) worst case, d is the degeneracy of the graph, this is typically small for sparse graphs.

Example 16.3.  File examples/simple/igraph_maximal_cliques.c

#include <igraph.h>

#define NODES 1000
#define CLIQUE_SIZE 10
#define NO_CLIQUES 10
#define INT(a) (igraph_rng_get_integer(igraph_rng_default(), 0, (a)))

void permutation(igraph_vector_int_t *vec) {
    igraph_integer_t i, r, tmp;
    for (i = 0; i < CLIQUE_SIZE; i++) {
        r = INT(NODES - 1);
        tmp = VECTOR(*vec)[i];
        VECTOR(*vec)[i] = VECTOR(*vec)[r];
        VECTOR(*vec)[r] = tmp;
    }
}

int sort_cmp(const igraph_vector_int_t *a, const igraph_vector_int_t *b) {
    igraph_integer_t i, alen = igraph_vector_int_size(a), blen = igraph_vector_int_size(b);
    if (alen != blen) {
        return (alen < blen) - (alen > blen);
    }
    for (i = 0; i < alen; i++) {
        igraph_integer_t ea = VECTOR(*a)[i], eb = VECTOR(*b)[i];
        if (ea != eb) {
            return (ea > eb) - (ea < eb);
        }
    }
    return 0;
}

void sort_cliques(igraph_vector_int_list_t *cliques) {
    igraph_integer_t i, n = igraph_vector_int_list_size(cliques);
    for (i = 0; i < n; i++) {
        igraph_vector_int_t *v = igraph_vector_int_list_get_ptr(cliques, i);
        igraph_vector_int_sort(v);
    }
    igraph_vector_int_list_sort(cliques, sort_cmp);
}

void print_cliques(igraph_vector_int_list_t *cliques) {
    igraph_integer_t i;
    sort_cliques(cliques);
    for (i = 0; i < igraph_vector_int_list_size(cliques); i++) {
        igraph_vector_int_t *v = igraph_vector_int_list_get_ptr(cliques, i);
        igraph_vector_int_print(v);
    }
}

int main(void) {

    igraph_t g, g2, cli;
    igraph_vector_int_t perm;
    igraph_vector_int_list_t cliques;
    igraph_integer_t no;
    igraph_integer_t i;

    igraph_rng_seed(igraph_rng_default(), 42);

    /* Create a graph that has a random component, plus a number of
       relatively small cliques */

    igraph_vector_int_init_range(&perm, 0, NODES);
    igraph_erdos_renyi_game(&g, IGRAPH_ERDOS_RENYI_GNM, NODES, NODES,
                            IGRAPH_UNDIRECTED, IGRAPH_NO_LOOPS);
    igraph_full(&cli, CLIQUE_SIZE, IGRAPH_UNDIRECTED, IGRAPH_NO_LOOPS);

    for (i = 0; i < NO_CLIQUES; i++) {
        /* Permute vertices of g */
        permutation(&perm);
        igraph_permute_vertices(&g, &g2, &perm);
        igraph_destroy(&g);
        g = g2;

        /* Add a clique */
        igraph_union(&g2, &g, &cli, /*edge_map1=*/ NULL, /*edge_map2=*/ NULL);
        igraph_destroy(&g);
        g = g2;
    }
    igraph_simplify(&g, /*multiple=*/ true, /*loop=*/ false, /*edge_comb=*/ NULL);

    igraph_vector_int_destroy(&perm);
    igraph_destroy(&cli);

    /* Find the maximal cliques */

    igraph_vector_int_list_init(&cliques, 0);
    igraph_maximal_cliques(&g, &cliques, /*min_size=*/ 3,
                           /*max_size=*/ 0 /*no limit*/);
    igraph_maximal_cliques_count(&g, &no, /*min_size=*/ 3,
                                 /*max_size=*/ 0 /*no limit*/);

    if (no != igraph_vector_int_list_size(&cliques)) {
        return 1;
    }

    /* Print them */

    print_cliques(&cliques);

    /* Clean up */

    igraph_vector_int_list_destroy(&cliques);
    igraph_destroy(&g);

    /* Build a triangle with a loop (thanks to Emmanuel Navarro) */

    igraph_small(&g, 3, IGRAPH_UNDIRECTED, 0, 1, 1, 2, 2, 0, 0, 0, -1);

    /* Find the maximal cliques */

    igraph_vector_int_list_init(&cliques, 0);
    igraph_maximal_cliques(&g, &cliques, /*min_size=*/ 3,
                           /*max_size=*/ 0 /*no limit*/);
    igraph_maximal_cliques_count(&g, &no, /*min_size=*/ 3,
                                 /*max_size=*/ 0 /*no limit*/);

    if (no != igraph_vector_int_list_size(&cliques)) {
        return 2;
    }

    /* Print them */

    print_cliques(&cliques);

    /* Clean up */

    igraph_vector_int_list_destroy(&cliques);
    igraph_destroy(&g);

    return 0;
}


1.8. igraph_maximal_cliques_file — Find maximal cliques and write them to a file.

igraph_error_t igraph_maximal_cliques_file(const igraph_t *graph,
                                FILE *outfile,
                                igraph_integer_t min_size,
                                igraph_integer_t max_size);

This function enumerates all maximal cliques and writes them to file.

Edge directions are ignored.

Arguments: 

graph:

The input graph.

outfile:

Pointer to the output file, it should be writable.

min_size:

Integer giving the minimum size of the cliques to be returned. If negative or zero, no lower bound will be used.

max_size:

Integer giving the maximum size of the cliques to be returned. If negative or zero, no upper bound will be used.

Returns: 

Error code.

See also: 

Time complexity: O(d(n-d)3^(d/3)) worst case, d is the degeneracy of the graph, this is typically small for sparse graphs.*

1.9. igraph_maximal_cliques_subset — Maximal cliques for a subset of initial vertices.

igraph_error_t igraph_maximal_cliques_subset(
    const igraph_t *graph, const igraph_vector_int_t *subset,
    igraph_vector_int_list_t *res, igraph_integer_t *no,
    FILE *outfile, igraph_integer_t min_size, igraph_integer_t max_size
);

This function enumerates all maximal cliques for a subset of initial vertices and writes them to file.

Edge directions are ignored.

Arguments: 

graph:

The input graph.

subset:

Pointer to an igraph_vector_int_t containing the subset of initial vertices

res:

Pointer to a list of integer vectors; the cliques will be stored here

no:

Pointer to an igraph_integer_t; the number of maximal cliques will be stored here.

outfile:

Pointer to an output file or NULL. When not NULL, the file should be writable.

min_size:

Integer giving the minimum size of the cliques to be returned. If negative or zero, no lower bound will be used.

max_size:

Integer giving the maximum size of the cliques to be returned. If negative or zero, no upper bound will be used.

Returns: 

Error code.

See also: 

Time complexity: O(d(n-d)3^(d/3)) worst case, d is the degeneracy of the graph, this is typically small for sparse graphs.

1.10. igraph_maximal_cliques_hist — Counts the number of maximal cliques of each size in a graph.

igraph_error_t igraph_maximal_cliques_hist(const igraph_t *graph,
                                igraph_vector_t *hist,
                                igraph_integer_t min_size,
                                igraph_integer_t max_size);

This function counts how many maximal cliques of each size are present in the graph. Size-1 maximal cliques are simply isolated vertices.

Edge directions are ignored.

Arguments: 

graph:

The input graph.

hist:

Pointer to an initialized vector. The result will be stored here. The first element will store the number of size-1 maximal cliques, the second element the number of size-2 maximal cliques, etc. For cliques smaller than min_size, zero counts will be returned.

min_size:

Integer giving the minimum size of the cliques to be returned. If negative or zero, no lower bound will be used.

max_size:

Integer giving the maximum size of the cliques to be returned. If negative or zero, no upper bound will be used.

Returns: 

Error code.

See also: 

Time complexity: O(d(n-d)3^(d/3)) worst case, d is the degeneracy of the graph, this is typically small for sparse graphs.

1.11. igraph_maximal_cliques_callback — Finds maximal cliques in a graph and calls a function for each one.

igraph_error_t igraph_maximal_cliques_callback(const igraph_t *graph,
                                    igraph_clique_handler_t *cliquehandler_fn, void *arg,
                                    igraph_integer_t min_size, igraph_integer_t max_size);

This function enumerates all maximal cliques within the given size range and calls cliquehandler_fn for each of them. The cliques are passed to the callback function as a pointer to an igraph_vector_int_t. The vector is owned by the maximal clique search routine so users are expected to make a copy of the vector using igraph_vector_int_init_copy() if they want to hold on to it.

Edge directions are ignored.

Arguments: 

graph:

The input graph.

cliquehandler_fn:

Callback function to be called for each clique. See also igraph_clique_handler_t.

arg:

Extra argument to supply to cliquehandler_fn.

min_size:

Integer giving the minimum size of the cliques to be returned. If negative or zero, no lower bound will be used.

max_size:

Integer giving the maximum size of the cliques to be returned. If negative or zero, no upper bound will be used.

Returns: 

Error code.

See also: 

Time complexity: O(d(n-d)3^(d/3)) worst case, d is the degeneracy of the graph, this is typically small for sparse graphs.

1.12. igraph_clique_number — Finds the clique number of the graph.

igraph_error_t igraph_clique_number(const igraph_t *graph, igraph_integer_t *no);

The clique number of a graph is the size of the largest clique.

The current implementation of this function searches for maximal cliques using igraph_maximal_cliques_callback() and keeps track of the size of the largest clique that was found.

Arguments: 

graph:

The input graph.

no:

The clique number will be returned to the igraph_integer_t pointed by this variable.

Returns: 

Error code.

See also: 

Time complexity: O(3^(|V|/3)) worst case.

2. Weighted cliques

2.1. igraph_weighted_cliques — Finds all cliques in a given weight range in a vertex weighted graph.

igraph_error_t igraph_weighted_cliques(const igraph_t *graph,
                            const igraph_vector_t *vertex_weights, igraph_vector_int_list_t *res,
                            igraph_real_t min_weight, igraph_real_t max_weight, igraph_bool_t maximal);

Cliques are fully connected subgraphs of a graph. The weight of a clique is the sum of the weights of individual vertices within the clique.

The current implementation of this function uses version 1.21 of the Cliquer library by Sampo Niskanen and Patric R. J. Östergård, http://users.aalto.fi/~pat/cliquer.html Only positive integer vertex weights are supported.

Arguments: 

graph:

The input graph.

vertex_weights:

A vector of vertex weights. The current implementation will truncate all weights to their integer parts. You may pass NULL here to make each vertex have a weight of 1.

res:

Pointer to a list of integer vectors, the result will be stored here. The pointer vector will be resized if needed.

min_weight:

Integer specifying the minimum weight of the cliques to be returned. If negative or zero, no lower bound will be used.

max_weight:

Integer specifying the maximum weight of the cliques to be returned. If negative or zero, no upper bound will be used.

maximal:

If true, only maximal cliques will be returned

Returns: 

Error code.

See also: 

Time complexity: Exponential

2.2. igraph_largest_weighted_cliques — Finds the largest weight clique(s) in a graph.

igraph_error_t igraph_largest_weighted_cliques(const igraph_t *graph,
                                    const igraph_vector_t *vertex_weights, igraph_vector_int_list_t *res);

Finds the clique(s) having the largest weight in the graph.

The current implementation of this function uses version 1.21 of the Cliquer library by Sampo Niskanen and Patric R. J. Östergård, http://users.aalto.fi/~pat/cliquer.html Only positive integer vertex weights are supported.

Arguments: 

graph:

The input graph.

vertex_weights:

A vector of vertex weights. The current implementation will truncate all weights to their integer parts. You may pass NULL here to make each vertex have a weight of 1.

res:

Pointer to a list of integer vectors, the result will be stored here. The pointer vector will be resized if needed.

Returns: 

Error code.

See also: 

Time complexity: TODO

2.3. igraph_weighted_clique_number — Finds the weight of the largest weight clique in the graph.

igraph_error_t igraph_weighted_clique_number(const igraph_t *graph,
                                  const igraph_vector_t *vertex_weights, igraph_real_t *res);

The current implementation of this function uses version 1.21 of the Cliquer library by Sampo Niskanen and Patric R. J. Östergård, http://users.aalto.fi/~pat/cliquer.html Only positive integer vertex weights are supported.

Arguments: 

graph:

The input graph.

vertex_weights:

A vector of vertex weights. The current implementation will truncate all weights to their integer parts. You may pass NULL here to make each vertex have a weight of 1.

res:

The largest weight will be returned to the igraph_real_t pointed to by this variable.

Returns: 

Error code.

See also: 

Time complexity: TODO

3. Independent vertex sets

3.1. igraph_independent_vertex_sets — Finds all independent vertex sets in a graph.

igraph_error_t igraph_independent_vertex_sets(const igraph_t *graph,
                                   igraph_vector_int_list_t *res,
                                   igraph_integer_t min_size,
                                   igraph_integer_t max_size);

A vertex set is considered independent if there are no edges between them.

If you are interested in the size of the largest independent vertex set, use igraph_independence_number() instead.

The current implementation was ported to igraph from the Very Nauty Graph Library by Keith Briggs and uses the algorithm from the paper S. Tsukiyama, M. Ide, H. Ariyoshi and I. Shirawaka. A new algorithm for generating all the maximal independent sets. SIAM J Computing, 6:505--517, 1977.

Arguments: 

graph:

The input graph.

res:

Pointer to a list of integer vectors, the result will be stored here. The pointer vector will be resized if needed.

min_size:

Integer specifying the minimum size of the sets to be returned. If negative or zero, no lower bound will be used.

max_size:

Integer specifying the maximum size of the sets to be returned. If negative or zero, no upper bound will be used.

Returns: 

Error code.

See also: 

Time complexity: TODO

Example 16.4.  File examples/simple/igraph_independent_sets.c

#include <igraph.h>
#include <stdlib.h>

int main(void) {

    igraph_t g;
    igraph_vector_int_list_t result;
    igraph_integer_t i, j, n;
    igraph_integer_t alpha;
    const int params[] = {4, -1, 2, 2, 0, 0, -1, -1};

    igraph_set_warning_handler(igraph_warning_handler_ignore);
    igraph_vector_int_list_init(&result, 0);

    igraph_kary_tree(&g, 5, 2, IGRAPH_TREE_OUT);
    for (j = 0; j < sizeof(params) / (2 * sizeof(params[0])); j++) {
        if (params[2 * j + 1] != 0) {
            igraph_independent_vertex_sets(&g, &result, params[2 * j], params[2 * j + 1]);
        } else {
            igraph_largest_independent_vertex_sets(&g, &result);
        }
        n = igraph_vector_int_list_size(&result);
        printf("%" IGRAPH_PRId " independent sets found\n", n);
        for (i = 0; i < n; i++) {
            igraph_vector_int_print(igraph_vector_int_list_get_ptr(&result, i));
        }
    }
    igraph_destroy(&g);

    igraph_kary_tree(&g, 10, 2, IGRAPH_TREE_OUT);
    igraph_maximal_independent_vertex_sets(&g, &result);
    n = igraph_vector_int_list_size(&result);
    printf("%" IGRAPH_PRId " maximal independent sets found\n", n);
    for (i = 0; i < n; i++) {
        igraph_vector_int_print(igraph_vector_int_list_get_ptr(&result, i));
    }

    igraph_independence_number(&g, &alpha);
    printf("alpha=%" IGRAPH_PRId "\n", alpha);

    igraph_destroy(&g);

    igraph_vector_int_list_destroy(&result);

    return 0;
}


3.2. igraph_largest_independent_vertex_sets — Finds the largest independent vertex set(s) in a graph.

igraph_error_t igraph_largest_independent_vertex_sets(const igraph_t *graph,
        igraph_vector_int_list_t *res);

An independent vertex set is largest if there is no other independent vertex set with more vertices in the graph.

The current implementation was ported to igraph from the Very Nauty Graph Library by Keith Briggs and uses the algorithm from the paper S. Tsukiyama, M. Ide, H. Ariyoshi and I. Shirawaka. A new algorithm for generating all the maximal independent sets. SIAM J Computing, 6:505--517, 1977.

Arguments: 

graph:

The input graph.

res:

Pointer to a list of integer vectors, the result will be stored here. The pointer vector will be resized if needed.

Returns: 

Error code.

See also: 

Time complexity: TODO

3.3. igraph_maximal_independent_vertex_sets — Finds all maximal independent vertex sets of a graph.

igraph_error_t igraph_maximal_independent_vertex_sets(const igraph_t *graph,
        igraph_vector_int_list_t *res);

A maximal independent vertex set is an independent vertex set which can't be extended any more by adding a new vertex to it.

The algorithm used here is based on the following paper: S. Tsukiyama, M. Ide, H. Ariyoshi and I. Shirawaka. A new algorithm for generating all the maximal independent sets. SIAM J Computing, 6:505--517, 1977.

The implementation was originally written by Kevin O'Neill and modified by K M Briggs in the Very Nauty Graph Library. I simply re-wrote it to use igraph's data structures.

If you are interested in the size of the largest independent vertex set, use igraph_independence_number() instead.

Arguments: 

graph:

The input graph.

res:

Pointer to a list of integer vectors, the result will be stored here. The pointer vector will be resized if needed.

Returns: 

Error code.

See also: 

Time complexity: TODO.

3.4. igraph_independence_number — Finds the independence number of the graph.

igraph_error_t igraph_independence_number(const igraph_t *graph, igraph_integer_t *no);

The independence number of a graph is the cardinality of the largest independent vertex set.

The current implementation was ported to igraph from the Very Nauty Graph Library by Keith Briggs and uses the algorithm from the paper S. Tsukiyama, M. Ide, H. Ariyoshi and I. Shirawaka. A new algorithm for generating all the maximal independent sets. SIAM J Computing, 6:505--517, 1977.

Arguments: 

graph:

The input graph.

no:

The independence number will be returned to the igraph_integer_t pointed by this variable.

Returns: 

Error code.

See also: 

Time complexity: TODO.