Use this if you are using igraph from R
cluster_leiden {igraph} | R Documentation |
The Leiden algorithm is similar to the Louvain algorithm,
cluster_louvain
, but it is faster and yields higher quality
solutions. It can optimize both modularity and the Constant Potts Model,
which does not suffer from the resolution-limit (see preprint
http://arxiv.org/abs/1104.3083).
cluster_leiden(
graph,
objective_function = c("CPM", "modularity"),
weights = NULL,
resolution_parameter = 1,
beta = 0.01,
initial_membership = NULL,
n_iterations = 2,
vertex_weights = NULL
)
graph |
The input graph, only undirected graphs are supported. |
objective_function |
Whether to use the Constant Potts Model (CPM) or
modularity. Must be either |
weights |
The weights of the edges. It must be a positive numeric vector,
|
resolution_parameter |
The resolution parameter to use. Higher resolutions lead to more smaller communities, while lower resolutions lead to fewer larger communities. |
beta |
Parameter affecting the randomness in the Leiden algorithm. This affects only the refinement step of the algorithm. |
initial_membership |
If provided, the Leiden algorithm will try to improve this provided membership. If no argument is provided, the aglorithm simply starts from the singleton partition. |
n_iterations |
the number of iterations to iterate the Leiden algorithm. Each iteration may improve the partition further. |
vertex_weights |
the vertex weights used in the Leiden algorithm.
If this is not provided, it will be automatically determined on the basis
of the |
The Leiden algorithm consists of three phases: (1) local moving of nodes, (2) refinement of the partition and (3) aggregation of the network based on the refined partition, using the non-refined partition to create an initial partition for the aggregate network. In the local move procedure in the Leiden algorithm, only nodes whose neighborhood has changed are visited. The refinement is done by restarting from a singleton partition within each cluster and gradually merging the subclusters. When aggregating, a single cluster may then be represented by several nodes (which are the subclusters identified in the refinement).
The Leiden algorithm provides several guarantees. The Leiden algorithm is typically iterated: the output of one iteration is used as the input for the next iteration. At each iteration all clusters are guaranteed to be connected and well-separated. After an iteration in which nothing has changed, all nodes and some parts are guaranteed to be locally optimally assigned. Finally, asymptotically, all subsets of all clusters are guaranteed to be locally optimally assigned. For more details, please see Traag, Waltman & van Eck (2019).
The objective function being optimized is
where is the total edge weight,
is the weight
of edge
,
is the so-called resolution
parameter,
is the node weight of node
,
is the cluster of node
and
if and
only if
and
otherwise. By setting
, the
degree of node
, and dividing
by
, you
effectively obtain an expression for modularity.
Hence, the standard modularity will be optimized when you supply the degrees
as vertex_weights
and by supplying as a resolution parameter
, with
the number of edges. If you do not
specify any
vertex_weights
, the correct vertex weights and scaling of
is determined automatically by the
objective_function
argument.
cluster_leiden
returns a communities
object, please see the communities
manual page for details.
Vincent Traag
Traag, V. A., Waltman, L., & van Eck, N. J. (2019). From Louvain to Leiden: guaranteeing well-connected communities. Scientific reports, 9(1), 5233. doi: 10.1038/s41598-019-41695-z
See communities
for extracting the membership,
modularity scores, etc. from the results.
Other community detection algorithms: cluster_walktrap
,
cluster_spinglass
,
cluster_leading_eigen
,
cluster_edge_betweenness
,
cluster_fast_greedy
,
cluster_label_prop
cluster_louvain
g <- graph.famous("Zachary")
# By default CPM is used
g <- cluster_leiden(g, resolution_parameter=0.06)